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Abstract

These notes contain the material presented at one of the mini-courses of the
Workshop on Character Varieties and Higgs bundles held in Liberia, Guanacaste,
Costa Rica, in August 2025. We sketch the main arguments and basic geometric
concepts underlying the “non-abelian Hodge correspondence” relating the mod-
uli space of Higgs bundles over a Riemann surface X with the character variety
parametrizing representations of the fundamental group of X. We start by giving
a “crash course” on vector bundles and connections on Riemann surfaces. Then,
we introduce the classification problem of vector bundles, in order to motivate the
natural appearance of moduli spaces, and explain how these moduli spaces can
also be constructed in terms of connections. In particular, we state the theorem
of Narasimhan-Seshadri as a first instance of non-abelian Hodge theory. Finally,
we state the Corlette-Donaldson theorem and the Hitchin-Simpson theorem, which
are the main results of non-abelian Hodge theory, and provide an interpretation of
these results in terms of moduli spaces.
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1 A primer on vector bundles and connections

1.1 Vector bundles in different categories

Let X be a compact Riemann surface. We can trivialize X by giving a complex atlas:
namely, we cover X by a family U of open subsets U ⊂ X with a homeomorphism
ψU : U → DU ⊂ C with some disk DU in C, for each U ∈ U, in such a way that the
coordinate change functions ψUV = ψV ◦ ψ−1

U : DU ∩DV → DU ∩DV are holomorphic.

Definition 1. A vector bundle E of rank r over X is given by glueing spaces of the form
EU = U ×Cr using a set of continuous transition functions {gUV : U, V ∈ U, U ∩ V ̸= ∅},
with

gUV : U ∩ V → GLr(C)
that satisfy the (1-)cocycle condition

gUV gVW = gUW .

A vector bundle is smooth, holomorphic or a local system if the transition func-
tions gUV are respectively smooth, holomorphic or locally constant.

Remark 2. Two vector bundles E and E ′ are isomorphic if and only if their corresponding
1-cocycles (gUV ) and (g′UV ) are cohomologous, meaning that there exists some family
{fU : U → GLr(C) : U ∈ U} (i.e. a 0-coboundary) such that

g′UV = fUgUV f
−1
V .

The action of such 0-coboundaries on the 1-cocycles determines a groupoid, which nat-
urally classifies vector bundles. The set of isomorphism classes of this groupoid can be
understood as a “nonabelian sheaf cohomology set” H1(X,GLr(C)X). Here, GLr(C)X
is the sheaf of local functions from X to GLr(C); these functions are considered to be
smooth, holomorphic or locally constant depending on whether we are considering smooth
bundles, holomorphic bundles or local systems.

Remark 3. Any compact Riemann surface is biholomorphic to the analytification Can a
smooth complex projective curve C. If we let U correspond a cover by Zariski open subsets
of C, we can also consider algebraic vector bundles, determined by the condition that
the transition functions gUV are regular maps into GLr (regarded as a smooth algebraic
variety over C). Serre’s GAGA theorem [6] implies that the category of algebraic vector
bundles over C is equivalent to the category of holomorphic vector bundles over X = Can.
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Remark 4. Consider a local system E over X determined by a set of locally constant
transition functions {gUV }. Given any point x0 ∈ X we can define the monodromy
representation ρE : π1(X, x0) → GLr(C) constructed as follows. If σ is a loop on X
based at x0, then we can partition the unit interval t0 = 0 < t1 < t2 < · · · < tN = 1 in such
a way that, for every i = 1, . . . , N there exists some Ui ∈ U such that σ([ti, ti+1]) ⊂ Ui. If
we call xi = σ(ti) and gij = gUiUj

, we can define

ρE(σ) = g12(x1)g23(x2) . . . gN1(xN).

Exercise 1. Verify the following statements about the remark above.

1. There exists such a partition of the unit interval. (Hint: Use “Lebesgue’s Number
Lemma”).

2. The map ρE(σ) does not depend on the choice of of “Lebesgue partition”.

3. The map ρE(σ) does not depend on the chosen representative of the homotopy class
[σ].

1.2 Connections and curvature

We denote by Ω1
X the (smooth) cotangent bundle of X, and by Ωk

X its k-th exterior
powers. The space of sections Ωk(U) of Ωk

X at an open subset U ⊂ X is by definition the
space of (smooth) differential k-forms on X. Recall that we have exterior differentiation
Ωk(U) → Ωk+1(U). Connections provide a way to generalize exterior differentiation to
differential forms with coefficients on a vector bundle. If E is a smooth vector bundle,
and U ⊂ X is an open subset, we denote by Γ(U,E) = Ω0(U,E) the set of sections of E
on U and by Ωk(U,E) the sections of E ⊗ Ωk

X on U .

Definition 5. Let E be a smooth vector bundle on X. A connection D on E is a
C-linear operator

D : Ω0(X,E) → Ω1(X,E)

such that
D(fs) = sdf + fDs,

for f a smooth function on X and s a section of E on X.

Remark 6. Note that the existence of smooth partitions of unity implies that D can
actually be regarded as a map of sheaves of sections

D : E → E ⊗ Ω1
X .

Remark 7. If U ∈ U is an open subset of X in the complex atlas, then the space of sections
of E on U is a free C∞(U)-module of rank r. A basis {e1, . . . , er} of this module is called
a frame of E on U . If D is a connection on E, for each ei of the frame, the connection
acts as

Dei =
∑
j

ejA
j
i ,

for some 1-form Aj
i ∈ Ω1(U). In matrix notation, writing e = (e1 · · · er) and A = (Aj

i ) as
a square matrix, we obtain

De = eA.
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Any section of E on U can be written as s =
∑

i s
iei, for s

i ∈ C∞(U). Therefore, we can
write

Ds =
∑
i

(dsiei + siDei) =
∑
i

(dsiei + siejA
i
j) = (d+ A)s

The matrix A is called the connection 1-form of D on U .

The exterior differential d is well known to satisfy the condition d2. This is however
not true in general for connections, which gives rise to the notion of curvature. More
precisely, there is a unique way of extending the map D : Γ(X,E) → Ω1(X,E) to a map
D : Ωk(X,E) → Ωk+1(X,E) in such a way that

D(ω ∧ α) = dω ∧ α+ (−1)kω ⊗Dα,

and
D(α ∧ ω) = Dα ∧ ω + (−1)kα⊗Dω,

for ω ∈ Ωp(X) and α ∈ Ωk−p(X,E).

Definition 8. Let D be a connection on a smooth vector bundle E. We define the
curvature of D as the operator

D2 : Γ(X,E) → Γ(X,E)⊗ Ω2(X).

Remark 9. The curvature D2 is a C∞-linear map since

D2(fs) = D(sdf + fDs) = Ds ∧ df + df ∧Ds+ f ∧D2s = fD2s,

for s ∈ Γ(X,E) and f ∈ C∞(X).

Remark 10. If e is a local frame of E on U , we have

D2(e) = D(eA) = De ∧ A+ edA = e(A ∧ A+ dA) = eFA,

for FA = dA+ A ∧ A a matrix of 2-forms called the curvature 2-form of D on U .

Exercise 2. Let E1 and E2 be two vector bundles, and consider an isomorphism g : E1 →
E2. Fix two local frames e1 and e2 of E1 and E2, respectively, on U , and consider the
associated matrix gU : U → GLr(C). Let D1 be a connection on E1 and consider the
“gauge transformed” connection D2 = f ◦ D1 ◦ f−1 on E2. Let A1 and A2 denote the
corresponding connection 1-forms on U , of D1 and D2 with respect to e1 and e2.

Show that
A2 = gUA1g

−1
U + gUdg

−1
U ,

and
FA2 = gUFA1g

−1
U .

In particular, this implies that the locally defined FA determine a globally defined
EndE-valued 2-form FD ∈ Ω2(X,EndE).

Exercise 3 (Distributions and connections). A distribution over a smooth manifold
M of dimension n is a subbundle Ξ ⊂ TM of the tangent bundle of M . Consider now
the natural projection p : E → X of a smooth vector bundle over X. Its differential
determines a natural morphism TE → p∗TX of vector bundles over E. The kernel of this
map is the bundle VE := p∗E ⊂ TE, which we call the vertical distribution.
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1. Prove that a connection D on E determines a horizontal distribution, namely,
that it determines a distribution HD ⊂ TE such that

TE = VE ⊕HD.

A distribution is involutive if, for any two sections of it (that is, for any two vector
field ξ, η which lie on it) their Lie bracket [ξ, η] also lies on Ξ.

2. Prove that HD is involutive if and only if D2 = 0.

1.3 Flat bundles and local systems

Definition 11. A connection D on a smooth vector bundle E is flat if its curvature is
0. A pair (E,D) formed by a smooth vector bundle and a flat connection is called a flat
bundle.

If (E1, D1) and (E2, D2) are two flat bundles, a morphism of flat bundles g :
(E1, D1) → (E2, D2) is determined by a morphism of bundles g : E1 → E2 such that
D2 = g ◦D1 ◦ g−1.

Theorem 12 (Frobenius). Let (E,D) be a flat bundle. Suppose that E is determined by
a cocycle (gUV ). Then there exists a 0-coboundary (fU) such that the functions g′UV =
(fV )

−1gUV fU are locally constant. The corresponding local system E ′ determined by (g′UV )
is called the holonomy local system associated with (E,D).

Proof. Suppose that we can find, for each U ∈ U, a frame ϵU of E on U such that DϵU = 0.
If we start from the family of frames {eU : U ∈ U} determining E in terms of the cocycle
(gUV ), each ϵU is of the form ϵU = eUfU , for fU : U → GLn(C). Now, on a non-empty
overlap U ∩ V , putting g′UV = f−1

V gUV fU , we have

0 = DϵU = D(eUfU) = D(eV gUV fU) = D(ϵV g
′
UV ) = DϵV g

′
UV + ϵV dg

′
UV .

We conclude that dg′UV = 0 and thus the g′UV are locally constant.
It remains to see that we can find such a frame ϵU . Equivalently, we want to find

matrix-valued functions fU : U → GLn(C) satisfying

0 = D(eUfU) = D(eU)fU + eUdfU = eU(AfU + dfU),

where A is the connection 1-form in the frame eU . Therefore, our problem is reduced to
that of finding solutions f to the differential equation

df + Af = 0.

As we explain in Exercise 4, this is just an application of Frobenius theorem, where the
integrability condition corresponds precisely to FA = dA+ A ∧ A = 0.

Exercise 4 (The Frobenius theorem. Analysts version). Consider an open subset U×V ⊂
Rm × Rn, where U is a neighborhood of 0 ∈ Rm. Consider a family of C∞ functions
F1, . . . , Fm : U × V → Rn. The theorem of Frobenius tells us that, for every x ∈ V , there
exists one and only one smooth function α : W → V , defined in a neighborhood W of 0
in Rn, with α(0) = x and solving the PDE

∂α

∂ti
(t) = Fi(t, α(t)), for all t ∈ W,
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if and only if there is a neighborhood of (0, x) ∈ U × V on which

∂Fj

∂ti
− ∂Fi

∂tj
+

n∑
k=1

∂Fj

∂xk
F k
i −

n∑
k=1

∂Fi

∂xk
F k
j = 0,

for i, j = 1, . . . ,m.
Prove that the equation df + Af = 0 can be written as the PDE above, and that the

integrability condition corresponds to the condition dA+ A ∧ A = 0.

Exercise 5 (The Frobenius theorem. Geometers version). A distribution D on a smooth
manifold M is integrable if there exists some submanifold N ⊂ M such that, for any
point p ∈ N , we have that TpN = Dp. In that case, we say that N is an integral manifold
of D. The “geometers version” of the Frobenius theorem says that a distribution D is
integrable if and only if it is involutive.

1. Prove the geometers version of Frobenius theorem from the “analysts version” from
the previous exercise.

We saw in a previous exercise that a connection D on E determines a horizontal
distribution HD ⊂ TE and that D is flat if and only if HD is involutive. Consider the
corresponding integral manifold Y ⊂ E.

2. Show that the natural projection p : E → X restricts to a local homeomorphism
π : Y → X.

3. Show that this π : Y → X is in fact a covering space.
4. Show that the monodromy representation associated with π : Y → X coincides with

the monodromy representation associated with the holonomy local system determined by
(E,D).

Exercise 6. We have shown that with any flat bundle (E,D) we can associate a local
system E ′. We want to show that this can be upgraded to an equivalence of categories.
In order to do so, we must show the following.

1. Show that there is a bijection between the set of morphisms (E1, D1) → (E2, D2) of
flat bundles and between the set of 0-coboundaries (fU) such that g′1,UV = fUg

′
2,UV f

−1
V .

2. Given a local system E ′ over X, construct a flat bundle (E,D) such that its holon-
omy local system is isomorphic to E ′.

Exercise 7 (de Rham theorem for degree 1 cohomology). Consider the trivial line bundle
CX := X×C → X. Show that the set of equivalence classes of flat connections on CX is in
natural bijection with the de Rham cohomology group H1

dR(X,C). Use the correspondence
of this section to prove that this group is isomorphic to the singular cohomology group
H1(X,C).

Exercise 8 (Connections of constant central curvature). Let ωX ∈ Ω2(X) be a volume
form on X with

∫
X
ωX = 1. A connection D on a smooth vector bundle has constant

central curvature if
FD = c idE ωX ,

for some constant c ∈ C∗. Formally, we can assume that ωX can get more and more
concentrated at a single point x1 ̸= x0 ∈ X so that in the limit we obtain a Dirac delta
ωC = δ(x1). In this limit, a connection D of constant central curvature is flat away from
x1, so (E,D) restricts to a flat bundle over X \{x1} and thus determines a representation
of the fundamental group

ρ : π1(X \ x1, x0) → GLr(C).
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Let σ be a contractible loop in X around x1 and based in x0. Show that the represen-
tation ρ must map the class of σ to exp(c/r).

1.4 Holomorphic structures as Dolbeault operators

We denote by KX = Ω1,0
X the holomorphic cotangent bundle of X and more generally, by

Ωp,q
X the vector bundles whose sections are differential forms of type (p, q). Recall that

we have the Dolbeault operator ∂̄ : Ωp,q(U) → Ωp,q+1(U). Holomorphic structures arise
naturally by generalizing Dolbeault operators to vector bundles.

Definition 13. Let E be a smooth vector bundle on X. A holomorphic structure ∂̄E
on E is a C-linear operator

∂̄E : E → E ⊗ Ω0,1
X

such that
∂̄E(fs) = s ∂̄ f + f ∂̄ s

for every smooth function f on U and every section s of E on U , for any open subset
U ⊂ X.

Remark 14. In higher dimensions, to obtain a holomorphic structure one should add
the condition that ∂̄

2
E = 0. However on Riemann surfaces this condition is empty, since

Ω0,2
X = 0.

There is an analogue of the Frobenius theorem for holomorphic structures, with a
sustantially more difficult proof.

Theorem 15. Consider a pair (E, ∂̄E) formed by a smooth vector bundle on X with a
holomorphic structure ∂̄E. Suppose that E is determined by a cocycle (gUV ). Then there
exists a 0-coboundary (fU) such that the functions g′UV = (fV )

−1gUV fU are holomorphic.

Remark 16. Following the same arguments as in the proof of 12. It suffices to show that
there exist local frames ϵU with ∂̄E ϵU . This problem itself reduces to finding solutions to
the equation

∂̄ f + Af = 0.

We refer the reader to [2, Section 5] for details on the integrability of this equation.

Remark 17. The above theorem tells us that, instead of thinking about a holomorphic
vector bundle E, we can think about the pair (E, ∂̄E) formed by the smooth vector bundle
E underlying E and the holomorphic structure ∂̄E. This is the typical approach in gauge
theory.

Remark 18. We also remark the fact that, if D is a connection on a smooth vector bundle
E, then we can take its (0, 1) part ∂̄D = D0,1, which determines a holomorphic structure
on E.

1.5 Hermitian metrics and the Chern correspondence

Definition 19. Let E be a smooth vector bundle on X. A Hermitian metric H on E
is determined by a Hermitian product ⟨−,−⟩H,x on each fibre Ex, in such a way that for
every open subset U ⊂ X and for every two sections s and t of E on U , the map

⟨s, t⟩H : U −→ C
x 7−→ ⟨s(x), t(x)⟩H,x
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is smooth. A pair (E,H) formed by a smooth vector bundle and a Hermitian metric is
called a Hermitian vector bundle.

Definition 20. Let (E,H) be a Hermitian vector bundle. A connection ∇ on E is H-
unitary if for every two local sections s and t of E and for every vector field of ξ on an
open U ⊂ X, we have

d⟨s, t⟩H(ξ) = ⟨∇s(ξ), t⟩H + ⟨s,∇t(ξ)⟩H .

Exercise 9. Show that if (E,H) is a Hermitian vector bundle and ∇ is a flat H-unitary
connection on E, then the monodromy representation ρ : π1(X, x0) → GLn(C) associated
with the corresponding local system factors trhough the unitary group U(n) ⊂ GLn(C) .

Theorem 21. Let (E, ∂̄E) be a holomorphic vector bundle. For every Hermitian metric
H on E, there exists a canonical connnection ∇H on E such that ∂̄E = ∇0,1

H . This
connection is called the Chern connection.

Proof. Consider a frame {e1, . . . , er} of E over some open subset U ∈ U, and assume that
this frame is holomorphic; that is, that ∂̄E ei = 0, for i = 1, . . . , r. Let us consider the
functions hij = ⟨ei, ej⟩H . If such a ∇H exists, then its connection 1-form A with respect
to this framing must be of type (0, 1), since we must have ∂̄E = ∇0,1

H . But then

dhij = d⟨ei, ej⟩ =
∑
k

Ak
i hkj + hikĀ

k
j ,

so ∂hij =
∑

k A
k
i hkj and ∂̄ hij =

∑
k hikĀ

k
j . Therefore, if we consider the matrix h = (hij)

we can just set
A = h−1∂h.

2 Classifying vector bundles

2.1 Topological classification

With any vector bundle E on X we can associate its determinant line bundle, defined
as follows. If E is determined by gluing spaces of the form EU = U × Cr via transition
functions gUV : U ∩V → GLr(C), then detE is obtained by gluing the spaces (detE)U =
U × ∧rCr through the transition functions det gUV : U ∩ V → C∗.

Exercise 10. Show that any smooth vector bundle E of rank r > 1 has a nowhere vanish-
ing global section. Is this true for holomorphic vector bundles? (Hint: Use transversality).

Using the section s from the exercise above, we obtain an injection s : CX ↪→ E. Now,
any smooth vector bundle admits a Hermitian metric, so we orthogonally decompose
E = s(CX)⊕ s(CX)

⊥. Iterating this process, we obtain that E can be written as

E = Cr−1
X ⊕ L,

for some line bundle L. Note however that L must be isomorphic to the determinant line
bundle L ∼= detE. We conclude the following.
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Theorem 22. A smooth vector bundle on X is determined by its rank and its determinant.

It thus remains the question of classfying smooth line bundles. Now, recall that these
line bundles are classified by the cohomology group H1(X,C∗

X), where C∗
X denotes the

sheaf of smooth functions U → C∗. The exponential exact sequence

0 2πiZ CX C∗
X 0

induces an exact sequence

H1(X,CX) H1(X,C∗
X) H2(X, 2πiZ) H2(X,CX).

δ

The existence of smooth partitions of unity implies that H i(X,CX) = 0 for i > 0, so we
obtain an isomorphism δ : H1(X,C∗

X)
∼= H2(X, 2πiZ). If L is a smooth line bundle on X

represented by a cohomology class [L] ∈ H1(X,C∗
X), we define the first Chern class of

L as

c1(L) =
i

2π
δ([L]) ∈ H2(X,Z).

Recall that integration determines an isomorphism∫
X

: H2(X,Z) → Z, α 7→
∫
X

α.

The degree of L is the number

degL =

∫
X

c1(L) ∈ Z.

More generally, if E is a vector bundle, then we define its first Chern class as c1(E) =
c1(detE), and its degree as degE = deg(detE).

Exercise 11 (Chern-Weil theory: Computing Chern classes using curvature). Let E
be a smooth vector bundle on X. If D is a connection on E and FD ∈ Ω2(X,EndE)
its curvature. Its trace determines a 2-form tr(FD) ∈ Ω2(X), and we can consider its
cohomology class [tr(FD)].

Prove that

c1(E) =
i

2π
[tr(FD)].

In particular, this implies that, if E admits a flat connection, then degE = 0.

To sum up, we conclude the following.

Theorem 23. Smooth vector bundles on a Riemann surface are classified by their rank
and their degree.

2.2 Holomorphic line bundles: the Jacobian

Let OX denote the sheaf of holomorphic functions on X and O∗
X the sheaf of non-vanishing

holomorphic functions. Holomorphic line bundles are classified by the Picard group
Pic(X) = H1(X,O∗

X). In the holomorphic case we also have an exponential exact sequence

0 2πiZ OX O∗
X 0,
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which induces an exact sequence

H1(X, 2πiZ) H1(X,OX) Pic(X) H2(X, 2πiZ).δ

Consider the subgroup Pic0(X) = {[L] ∈ Pic(X) : δ([L]) = 0}. It follows from the exact
sequence above that Pic0(X) is isomorphic to the Jacobian of X, which is defined as
the quotient

Jac(X) = H1(X,OX)/H
1(X, 2πiZ).

Exercise 12. Verify that Jac(X) is an abelian variety of dimension g, where g is the
genus of X. [Hint: First, you need to convince yourself thatH1(X,OX) is a complex vector
space of dimension g. This follows either directly from Hodge theory or from GAGA and
the fact that X is the analytification of a smooth projective curve (which essentially
follows from Hodge theory). Second, you need to verify that there is a Riemann form
with respect to the lattice H1(X, 2πiZ). You can construct this form using Poincaré
duality.]

Remark 24. Note that this already hints on the complexity of classifying holomorphic
vector bundles. While smooth line bundles were simply determined by a number, there is
a whole complex manifold worth of isomorphism classes of holomorphic line bundles with
the same degree. This is the starting point of the study of moduli spaces of bundles.

2.3 The moduli space of vector bundles on a projective curve

When the genus of X is low, the problem of classifying vector bundles can be solved
relatively easily. For example, Grothendieck [4] showed that every holomorphic vector
bundle over the Riemann sphere CP1 can be decomposed as a direct sum of line bundles.
For genus 1, Atiyah [1] obtained a explicit description of vector bundles in terms of
extensions. The problem gets its full complexity for genus ≥ 2. In higher genus, Seshadri
[7] constructed the moduli space of polystable vector bundles. This is a condition arising
naturally from Mumford’s GIT, and that can be formulated as follows.

Definition 25. The slope of a vector bundle E on X is the number

µ(E) = degE/rk E.

A holomorphic vector bundle E on X is stable if and only if for every holomorphic
subbundle E′ ⊂ E, we have

µ(E′) < µ(E).

We say that E is polystable if it is either stable or a direct sum of stable vector bundles
of slope equal to µ(E).

Let C be a complex projective curve. The same definitions naturally apply for algebraic
vector bundles over C.

Definition 26. The moduli problem of stable vector bundles of rank r and
degree d on C is the functor

Ns
r,d : (C-schemes)op −→ Set
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which maps a C-scheme S to the set of isomorphism classes of flat families of stable vector
bundles of rank r and degree d on C parametrized by S, and a morphism S → T to the
map sending a family to its pull-back.

A coarse moduli space for Ns
r,d is a C-scheme M with a morphism of functors

Ψ : Ns
r,d → Hom(−,M) such that

1. Ψ(C) : Ns
rd(C) →M(C) is a bijection,

2. for every C-scheme M ′ and any morphism of functors Ψ′ : Ns
r,d → Hom(−,M ′),

there exists a unique morphism f : M → M ′ such that the following diagram
commutes

Hom(−,M)

Ns
r,d

Hom(−,M ′).

Hom(−,f)

Ψ

Ψ′

Theorem 27 (Seshadri). Let C be a complex projective curve of genus g ≥ 2. There
exists a projective variety Nr,d, the moduli space of polystable vector bundles of
rank r and degree d on C, such that:

1. The set closed points Nr,d(C) is in natural bijection with the set of isomorphism
classes of polystable algebraic vector bundles of rank r and degree d on C.

2. There is a Zariski open subvariety Ns
r,d ⊂ Nr,d which is a coarse moduli space for

the moduli problem Ns
r,d.

2.4 Analytic construction of the moduli space

Let E be a smooth vector bundle. We denote by CE the space of holomorphic structures
∂̄E on E. The difference of any two holomorphic structure is a (1, 0)-form valued in in
EndE. Therefore, the space CE is an affine space modelled by the infinite dimensional
vector space Ω0,1(X,EndE). The complex gauge group GC

E = Ω0(X,AutE) acts on
CE by conjugation

g · ∂̄E = g ∂̄E g
−1.

Note that for such a g ∈ GC
E, the holomorphic vector bundles (E, ∂̄E) and (E, g · ∂̄E) are

isomorphic. Conversely, two holomorphic vector bundles E and E′ are isomorphic if and
only if their associated operators ∂̄E and ∂̄E′ are related by some g ∈ GC

E.
The quotient set CE/G

C
E is therefore the set of isomorphism classes of holomorphic

vector bundles with underlying smooth bundle E. If we restrict to the subset Cps
E ⊂ CE of

holomorphic structures ∂̄E such that E is polystable, then C
ps
E /G

C
E is the set of isomorphism

classes of polystable holomorphic vector bundles. Taking care of the common functional-
analysis technicalities, one can endow the quotient Cps

E /G
C
E with the structure of an analytic

space, naturally coming from the fact that it is a quotient of an open subset in an (infinite-
dimensional) vector space by an (infinite-dimensional) complex Lie group. This quotient
is in fact the analytification of the “algebraic” moduli space Nr,d.
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2.5 Hermitian-Einstein metrics

We consider once again our Riemann surface X. Let us fix a volume form ωX ∈ Ω2(X) on
X with

∫
X
ωX = 1. Polystability is related to the existence of a special type of metrics.

Definition 28. A Hermitian-Einstein metric (HE metric) on a holomorphic vector
bundle E is a Hermitian metric H on E such that its Chern connection ∇H has constant
central curvature; that is, such that

FH = c idE ωX ,

for FH = F∇H
and some constant c ∈ C∗.

Exercise 13. Show that if H is a HE metric on E, then c must be equal to −2πiµ(E).

Proposition 29. If E admits a HE metric then it is polystable.

Proof. Suppose that E′ ⊂ E is a holomorphic subbundle of E and consider the quotient
E′′ = E/E′. We can write

∇H =

(
∇′ β
−β† ∇′′

)
.

Here, ∇′ and ∇′′ are the restriction and the projection of ∇H to E′ and E′′, respectively,
while β ∈ Ω0,1(X,Hom(E′′,E′)) is a representative of the class of E as extension of E′′ by
E′. In particular, if β = 0, then E = E′ ⊕ E′′. The form β† ∈ Ω1,0(X,Hom(E′,E′′)) is just
the conjugate transpose of β.

Now, the top left element of FH is F∇′ − β ∧ β†. Taking traces, integrating and
multiplying by i

2π
, we obtain

c
i

2π
rk E′ =

i

2π

∫
X

tr F∇′ + ∥β∥2.

From here, we get
µ(E) = µ(E′) + C∥β∥2,

for some constant C > 0. Therefore, µ(E) ≥ µ(E′), with equality if and only if β = 0.

2.6 The theorem of Narasimhan–Seshadri

The converse of the above proposition is the celebrated theorem of Narasimhan–Seshadri
[5] (see also [2, 3]).

Theorem 30 (Narasimhan–Seshadri). Every polystable holomorphic vector bundle admits
a HE metric.

This result can be interpreted in a more “structural” way as follows. Let us start by
consdering a smooth vector bundle E. We denote by AE the space of connections on E.
This is an affine space modelled over the (infinite-dimensional) vector space Ω1(X,EndE).
If H is a Hermitian metric on E, we can consider the subspace AE,H ⊂ AE of connections
which areH-unitary. This is an affine subspace, modelled by the vector space Ω1(X, uHE),
where uHE is the subspace of endomorphisms which are skew-Hermitian (that is f † =
−f) with respect to the metric H. The space AE,H is acted on by the gauge group

12



GE,H = Ω0(X,UHE), for UHE the subgroup of H-unitary automorphisms. Consider the
map

µ : AE,H → Ω2(X, uHE), ∇ 7→ F∇

sending each unitary connection to its curvature. The subspace A0
E,H ⊂ AE,H of connec-

tions of central constant curvature is the preimage µ−1(−2πiµ(E) idE ωX). The quotient
A0

E,H/GE is the d-twisted U(r)-character variety

Xd
U(r) =

{
(A1, . . . , Ag, B1, . . . , Bg, Z) ∈ U(r)2g+1 :

g∏
i=1

[Ai, Bi] = Z,Z = e−
2πid
r Ir

}
/U(r),

where U(r) acts by conjugation.
The theorem of Narasimhan–Seshadri is then telling us that the map

CE → AE,H , ∂̄E 7→ ∇(E,H),

sending a holomorphic structure ∂̄E to the Chern connection of the Hermitian holomorphic
bundle (E, H), descends to a map Cs

E → A0
E,H and induces a natural bijection

Nr,d(C) ∼= Xd
U(r).

Remark 31. In fact, the theorem of Narasimhan-Seshadri not only gives a bijection, but
actually a homeomorphism, which restricts to a diffeomorphism on the smooth parts.
The way to convince ourselves that this is true is to study the associated deformation
complexes. This is beyond the scope of these notes, but we refer the interested reader
to [5, 8, 9].

3 Nonabelian Hodge theory

3.1 Character varieties

Let Γ = ⟨s1, . . . , sp : r1(s1, . . . , sp) = 1, . . . , rq(s1, . . . , sq) = 1⟩ be a finitely presented
group. The GLr-representation variety RΓ,GLr (over C) associated with Γ is the
affine variety representing by the functor sending any C-algebra A to the set

RΓ,GLr(A) = Hom(Γ,GLr(A))

= {S1, . . . , Sp ∈ GLr(A) : r1(S1, . . . , Sp) = Ir, . . . , rq(S1, . . . , Sp) = Ir} .

The group GLr acts on RΓ,GLr by conjugation and the GIT quotient

XΓ,GLr = RΓ,GLr //GLr = Spec(C[RΓ,GLr ]
GLr)

is called the GLr-character variety (over C) associated with Γ. More generally, if
we fix a generator si ∈ Γ conjugacy class c ⊂ GLr, we can also consider the subvariety
R

c,si
Γ,GLr

⊂ RΓ,GLr representing the functor

A 7→ R
c,si
Γ,GLr

(A) = {ρ : Γ → GLr(A) : ρ(si) ∈ c} ,

and the corresponding GIT quotient

X
c,si
Γ,GLr

= R
c,si
Γ,GLr

//GLr .
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One of the important properties of the GIT quotient is that the closed points of
X

c,si
Γ,GLr

correspond to the closed GLr(C) orbits in R
c,si
Γ,GLr

. Now, these orbits are precisely
the orbits of the semisimple representations. Recall that a representation ρ : Γ → GLr(C)
is semisimple if and only if it decomposes as a direct sum of simple representations.
Therefore, if we consider the subset R

c,si
Γ,GLr

(C)+ ⊂ R
c,si
Γ,GLr

(C) consisting of semisimple
representations, we have

X
c,si
Γ,GLr

(C) = R
c,si
Γ,GLr

(C)+/GLr(C).

3.2 The Betti moduli space

Let us consider now our compact Riemann surface X, with two marked points x0 and x1,
and let us take

Γ = π1(X \ {x1} , x0) =

〈
a1, . . . , ag, b1, . . . , bg, z :

g∏
i=1

[ai, bi] = z

〉
.

For any integer d, we let cd ⊂ GLr denote the conjugacy class of the matrix e−
2πid
r Ir. We

define the Betti moduli space MB
r,d of X as

MB
r,d = X

cd,z
Γ,GLr

.

In particular, for d = 0, we obtain the character variety

MB
r,d = Xπ1(X,x0),GLr .

We can construct this moduli space analytically as follows. Let E be a smooth vector
bundle over X and consider the space AE of connections in E. Recall that we have a map

µ : AE → Ω2(X,EndE), D 7→ FD,

and we can consider the subspace A0
E = µ−1(−2πiµ(E) idE ωX) of connections of constant

central curvature. The holonomy representation determines a map

A0
E → R

cd,z
Γ,GLr

(C).

Exercise 14. A connection D ∈ A0
E is called reductive if every D-invariant subbundle

of E admits a D-invariant complement. Prove that D is reductive if and only if the
corresponding holonomy representation is semisimple.

We consider then the subspace A
0,+
E ⊂ A0

E of reductive connections. The holonomy
representation then induces a homeomorphism

A
0,+
E /GC

E
∼= R

cd,z
Γ,GLr

(C)+/GLr(C) = MB
r,d(C).

3.3 Harmonic metrics and the Hitchin equations

A Hermitian metric H on a smooth vector bundle E induces a natural “Cartan decom-
position”

EndE = uHE ⊕ iuHE,
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since every endomorphism can be decomposed in its Hermitian and skew-Hermitian parts.
Therefore, if D is a connection on E, then we can write

D = ∇+ iΦ,

where ∇ is a H-unitary connection on E and Φ ∈ Ω1(X, uHE).
If the connection D has constant central curvature, then we have

−2πiµ(E) idE ωX = FD = F∇ − 1
2
[Φ,Φ] +∇Φ +∇†Φ.

Here ∇† is defined using both the metric on X and the Hermitian metric H. Separating
in Hermitian and skew-Hermitian parts, we obtain the equations{

F∇ − 1
2
[Φ,Φ] = −2πiµ(E) idE ωX ,

∇Φ +∇†Φ = 0.

Definition 32. A Hermitian metric on a pair (E,D) formed by a bundle and a metric
with constant central curvature is called harmonic if

∇†Φ = 0.

Definition 33. A solution to the Hitchin equations is a tuple (E,H,∇,Φ) formed
by a smooth Hermitian vector bundle (E,H), a H-unitary connection ∇ on E and a
1-form Φ ∈ Ω1(X, uHE) such that it satisfies the Hitchin equations{

F∇ − 1
2
[Φ,Φ] = −2πiµ(E) idE ωX ,

∇Φ = ∇†Φ = 0.

Clearly, H is a harmonic metric on a pair (E,D) if and only if the corresponding
(E,H,∇,Φ) is a solution to the Hitchin equations. The crucial result is then the following.

Theorem 34 (Donaldson–Corlette). A pair (E,D) admits a harmonic metric if and only
if the connection D is reductive.

Let us fix now any Hermitian metric H on E, and consider the space

HE,H = AE,H ⊕ Ω1(X, uHE)

and the subspace H0
E,H ⊂ HE,H consisting of pairs (∇,Φ) such that (E,H,∇,Φ) is a so-

lution to the Hitchin equations. The gauge group GE,H acts naturally on HE,H preserving
the subspace H0

E,H . The quotient

MH
r,d = H0

E,H/GE,H

is called the moduli space of solutions to the Hitchin equations or just the
Hitchin moduli space.

The theorem of Donaldson–Corlette is then telling us that the map

A0
E → HE,H , D 7→ (∇,Φ)

descends to a map A
0,+
E → H0

E,H and induces a homeomorphism

(MB
r,d)

an ∼= MH
r,d.
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3.4 Higgs bundles over a complex projective curve

Definition 35. A Higgs bundle is a pair (E, φ) consisting of a holomorphic vector
bundle E over X a and holomorphic section φ ∈ H0(X,EndE⊗KX).

Remark 36. One should think (locally) about φ as a matrix of (1, 0)-forms.

The same definition clearly applies over a complex projective curve C, replacing E

by an algebraic vector bundle, KX by the algebraic cotangent bundle of C, and φ by an
algebraic section.

Definition 37. A Higgs bundles (E, φ) is stable if and only if for every φ-invariant
holomorphic subbundle E′ ⊂ E, we have

µ(E′) < µ(E).

We say that E is polystable if it is either stable or a direct sum of stable Higgs bundles
with slope equal to µ(E).

As we did for vector bundles, we can similarly define the moduli problem and the
notion of coarse moduli space of stable Higgs bundles such that the underlying bundle
has fixed rank r and degree d. We denote this moduli problem by Ms

r,d.

Theorem 38 (Nitsure). Let C be a complex projective curve of genus g ≥ 2. There exists
a quasi-projective variety Mr,d, called the moduli space of polystable Higgs bundles
of rank r and degree d on C, or just Dolbeault moduli space, such that:

1. The set of closed points Mr,d(C) is in natural bijection with the set of isomorphism
classes of polystable algebraic Higgs bundles of rank r and degree d on C.

2. There is a Zariski open subvariety Ms
r,d ⊂ Mr,d which is a coarse moduli space for

Ms
r,d.

The analytification of the Dolbeault moduli space is a complex manifold parametrizing
(holomorphic) Higgs bundles on X = Can. It admits an analytic construction similar to
that of the moduli space of vector bundles. Let E be a smooth vector bundle. We denote
by SE ⊂ CE × Ω0(X,EndE ⊗KX) the subspace of pairs (∂̄E, φ) such that ∂̄E φ = 0. In
other words, these are pairs formed by a holomorphic structure on E and a section of
EndE ⊗ KX which is holomorphic with respect to that holomorphic structure. Thus,
a Higgs bundle (E, φ) with underlying smooth vector bundle E can be regarded simply
as a pair (∂̄E, φ) ∈ SE. The complex gauge group GC

E = Ω0(X,AutE) acts on SE by
conjugation

g · (∂̄E, φ) = (g ∂̄E g
−1, gφg−1),

and it is clear that two pairs (∂̄E, φ) and (∂̄E′ , φ′) are related by some g ∈ GC
E if and only if

the corresponding Higgs bundles (E, φ) and (E′, φ′) are isomorphic. Therefore the quotient
SE/G

C
E is the set of isomorphism classes of Higgs bundles with underlying smooth bundle

E. If we restrict to the subset Sps
E ⊂ S of pairs (∂̄E, φ) such that (E, φ) is polystable, then

S
ps
E /G

C
E is the set of isomorphism classes of stable Higgs bundles. This quotient can be

endowed with the structure of an analytic space, and it coincides with the analytification
of the “algebraic” moduli space Mr,d.

Consider now a Higgs bundle (E, φ), and let H be a Hermitian metric on E. There
is then an associated Chern connection ∇H . We can also construct a 1-form ΦH ∈
Ω1(X, uHE) by putting

ΦH = φ− φ†.
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Exercise 15. Show that the equation ∂̄E φ = 0 implies that

∇HΦH = ∇†
HΦH = 0.

Definition 39. A Hermitian-Einstein-Higgs metric (HEH metric) on a Higgs bundle
(E, φ) is a Hermitian metric H on E such that the associated pair (∇H ,ΦH) defined above
satisfies the equation

FH − 1

2
[Φ,Φ] = −2πiµ(E) idE ωX .

In other words, H is a HEH metric on (E, φ) if and only if (E,H,∇H ,ΦH) is a solution
to the Hitchin equations.

Theorem 40 (Hitchin–Simpson). A Higgs bundle (E, φ) admits a HEH metric if and
only if it is polystable.

This theorem tells us that, if we fix a smooth vector bundle E and a Hermitian metric
H on it, the map

SE → HE,H , (∂̄E, φ) 7→ (∇H ,ΦH)

desdends to a map S
ps
E → H0

E,H and induces a homeomorphism

(Mr,d)
an ∼= MH

r,d.

Exercise 16 (Some examples of Higgs bundles). Can you think of any “trivial” or easy
examples of Higgs bundles. Are they stable?

A less trivial example is obtained if we consider any holomorphic line bundle L over
X and take E = L⊗KX⊕L. For any pair of sections (a1, a2) ∈ H0(X,KX)⊕H0(X,K2

X),
we can equip E with the Higgs field

φ =

(
a1 a2
1 a1

)
.

Show that, despite the fact that E is not stable nor polystable, the Higgs bundle (E, φ)
is indeed stable.

Exercise 17 (Spin structures, and some more examples). A spin structure or theta-
characteristic on X is a holomorphic line bundle L on X such that L2 ∼= KX .

Show that the set of spin structures on X up to equivalence is a torsor under the
cohomology group H1(X,Z/2Z). Therefore, there are exactly 22g equivalent spin structures
on a genus g surface. Why do you think these are called spin structures?

Fix a spin structure L on X and consider the holomorphic vector bundle

E = L⊕ L−1.

For any a2 ∈ H0(X,K2
X), we can equip E with the Higgs field

φ =

(
0 a2
1 0

)
.

In particular, note that detE = OX and that tr(φ) = 0. This is what is called an SL2-Higgs
bundle.
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3.5 Summary of nonabelian Hodge theory

Let us pause for a second to summarize the main statements of nonabelian Hodge theory.
Let E be a smooth vector bundle on X of rank r and degree d.

1. If (E, φ) is a polystable Higgs bundle on X, we can find a HEH metric on it, and
obtain a flat connection

D = ∂HE + ∂̄E+φ− φ†.

2. If (E,D) is a reductive flat bundle on X and H is a harmonic metric on it, then we
can obtain a Higgs bundle

(E, φ) = ((E,∇0,1), 1
2
Φ),

where D = ∇ + iΦ is the decomposition into Hermitian and skew-Hermitian parts
induced by H.

3. The above determines a bijection, and in fact a homeomorphism between (the ana-
lytifications of) the Betti moduli space MB

r,d and the Dolbeault moduli space Mr,d.

3.6 Profitting from nonabelian Hodge theory

Exercise 18 (Uniformization à la Hitchin). Nonabelian Hodge theory is so strong that
it implies the uniformization theorem. Let us explore this in detail. We start by fixing
a Riemannian metric g = u(z, z̄)dzdz̄ compatible with the complex structure of X (that
is, compatible with the conformal structure). The Levi-Civita connection associated to
this metric can be regarded as a U(1)-connection on the canonical line bundle KX . The
curvature F0 of the metric g is the curvature of the induced U(1)-connection on the
tangent bundle K−1

X .
Let us now fix a spin structure L on X with the induced U(1)-connection. In turn we

obtain a connection (reducible to U(1)) on the vector bundle E = L⊕L−1, with curvature

F =

(
−1

2
F0 0
0 1

2
F0

)
.

Consider the Higgs field

φ =

(
0 0
1 0

)
.

We already now that this Higgs bundle (E, φ) is stable (it is a particular case of Exercise
16). The Hitchin equation then becomes(

−1
2
F0 0
0 1

2
F0

)
=

(
1 0
0 −1

)
udzdz̄.

Therefore, we obtain the equation
F0 = −2g.

Verify that this means precisely that g has constant curvature equal to −4. Conclude from
here the uniformization theorem.
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