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Abstract

These notes are based on the material presented in one of the mini-courses of the Workshop
on Character Varieties and Higgs Bundles, held in Liberia, Guanacaste, Costa Rica, in August
2025.

We begin by recalling the notions of real or complex Lie and algebraic groups, as well
as finitely generated groups, essential ingredients in the definition of a character variety. We
then examine the space of representations of a finitely generated group into a Lie or algebraic
group, discussing its topology, variety structure, tangent space, and the conjugation action of
the target group. Next, we construct the quotient by this action, the character variety, and
present different approaches to this construction. We also explore the existence of deformation
retractions between character varieties when considering maximal compact subgroups of the Lie
group. Finally, we discuss the correspondence between representations of surface groups and
principal bundles, with a particular focus on Schottky representations.
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1 Preliminaries

In this section, we briefly review Lie groups and algebraic groups, as well as some basic notions
about finitely generated groups. These are the main ingredients in the construction of character
varieties. Our exposition follows the insightful survey by Arnaut Maret [Mar25].

1.1 Lie groups

Definition 1.1. A Lie group G is a real/complex smooth manifold with a group structure, where
the group operations are smooth/holomorphic maps.

Every Lie group admits an analytic atlas (unique up to diffeomorphism), such that the group
operations are analytic maps.

Let G◦ denote the identity component of a Lie group G, the centralizer of a subset S of G,
Z(S), is the following Lie subgroup of G

Z(S) := {g ∈ G : gsg−1 = s, ∀s ∈ S}

When S = G, Z(G) is called the center of G.
Next, we give some classical examples of matrix or linear Lie groups, which will be the cases

we will consider.

Example 1.2.

1. The group of invertible n×n matrices denoted by Gl(n,R) or Gl(n,C), for the real or complex
case, respectively, called general linear groups.

2. The subgroups of the previous examples, Sl(n,R) = {M ∈ Gl(n,R) : det(M) = 1} (special
linear group), O(n) = {M ∈ Gl(n,R) : M⊤M = In} (orthogonal group), SO(n,R) = O(n) ∩
Sl(n,R) (special orthogonal group), SU(p.q), Sp(2n,R) for the real case and Sl(n,C) (special
linear group), SO(n,C) for the complex case (of course, these also have a real structure).
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There are Lie groups that are not linear, an example is the universal cover of Sl(2,R).
Performing the quotient of a Lie group G by its center, we get a Lie group, called the adjoint

Lie group of G. For the linear group case, it is usually added a P before the group name.

The Lie algebra of a Lie group G will be denoted by g, this can be characterized as the tangent
space of G at the identity element. There exists the so-called exponential map exp : g → G. An
important map is the adjoint representation of G on g, defined by Ad : G→ Aut(g) such that

Ad(g)(v) =
d

dt

∣∣∣∣
t=0

gexp(tv)g−1, g ∈ G, v ∈ g

where Aut(g) is the group of automorphims of g.
Considering its derivative at the identity element of G, which is called the adjoint representation

of g and is denoted by ad, it is a linear map between g and its space of endomorphisms, End(g). If
the Lie algebra g has the Lie bracket [−,−] : g× g → g, then

ad(v1)(v2) = [v1, v2], v1, v2 ∈ g

The kernel of ad is called the center of g and is denoted by z(g). This can be characterized as the
Lie algebra of Z(G).

A Lie algebra g can be classified as follows:

1. A simple Lie algebra is a non-abelian Lie algebra with the zero ideal as its only proper ideal.
Using the one-to-one correspondence between the ideal of a Lie algebra and subrepresentations
of its adjoint representation, a Lie algebra is simple if and only if its adjoint representation
is irreducible and it is not a 1-dimensional abelian Lie algebra.

2. A semisimple Lie algebra is a Lie algebra with only zero abelian ideals. This is equivalent to
be a direct sum of simple Lie algebras. Using the so called Killing form for a Lie algebra g,

K : g× g −→ R
(v1, v2) 7−→ Tr(ad(v1)ad(v2))

By the Cartan criterion, a Lie algebra is semisimple if and only if its Killing form is non-
degenerate.

3. A reductive Lie algebra is a direct sum of an abelian and a semisimple Lie algebra. This is
equivalent to its adjoint representation being completely reducible, that is, it decomposes as
a direct sum of irreducible representations. Another equivalent characterization is that a re-
ductive Lie algebra admits a faithful, completely reducible, finite-dimensional representation.

A simple Lie algebra is semisimple, and the semisimple one is a reductive Lie algebra.
A Lie group is called simple, semisimple or reductive if its Lie algebra is simple, semisimple or

reductive, respectively.

Example 1.3.

1. The groups Sl(n,R), for n ≥ 2, Sp(2n,R) and SU(p, q), for p+ q ≥ 2 are simple. The identity
component of the group SO(n) is simple for n ≥ 3 and n ̸= 4 and semisimple for n = 4.
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2. The identity component of the group Gl(n,R) is not semisimple for n ≥ 1, but it is reductive.
Its Lie algebra is the direct sum of the simple Lie algebras of traceless matrices and the
abelian Lie algebra of diagonal matrices.

Another characterization to be reductive is that a connected linear Lie subgroup G of Gl(n,R)
is reductive if and only if the trace form

Tr : g× g −→ R
(v1, v2) 7−→ Tr(v1v2)

is non-degenerate. This result also holds for the complex case and it will induce a non-
degenerate, symmetric, Ad-invariant, real-valued bilinear form given by the real part of the
trace form, denoted by R(Tr).

3. Consider Sl(2,R) and the trace form

Tr : sl2R× sl2R −→ R
(v1, v2) 7−→ Tr(v1v2)

The trace of a matrix is invariant under conjugation, then the trace will be Ad-invariant.
Choosing the following basis for sl2R((

1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

))
the trace form is given by 2x1x2 + y1z2 + z1y2 which is a symmetric and non-degenerate with
signature (2, 1).

1.2 Algebraic groups

Some good references on Algebraic groups are [Borel; Hum75; Mil13; Mil17].

Definition 1.4. An algebraic group G is an (affine) algebraic variety, that is, the zero locus of a
set of polynomials over R or C, with a group structure where operations maps are regular algebraic
maps (restrictions of polynomials maps).

The Zariski closure of a subgroup of an algebraic group is also an algebraic group and an
algebraic subgroup of an algebraic group is Zariski closed. An application of this is that the
centralizer of a subset of an algebraic group is Zariski colsed, then it is an algebraic group. All the
real or complex algebraic groups have also a Lie group structure.

Example 1.5.

1. The previous example in 1.2 are algebraic groups, called linear algebraic groups.

2. Elliptic curves.

3. The group PGL(n,R) is a real algebraic group for n ≥ 1, it can be seen as the group of
automorphisms of the n× n matrices which is an algebraic subgroup of Gl(n2,R). The same
is valid for the complex case.
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4. For n odd, PSL(n,R) = PGL(n,R) so it is algebraic. For n even, PSL(n,R) = PGL(n,R)◦
which is a semialgebraic group (defined by polynomials inequalities).

A reductive connected algebraic group has another very useful characterization.

Proposition 1.6. An algebraic group contains a unique maximal normal connected solvable sub-
group called the radical.

A connected complex algebraic group is reductive if and only if its radical is isomoprphic to
(C∗)n, for some n ≥ 0. And it is semisimple if and only if its radical is trivial.

Example 1.7. The algebraic group Sl(2,C) is a semisimple algebraic group with complex dimension
3. It is a non-compact, simple complex Lie group and irreducible. Its center is Z(Sl(2,C)) = {±I2}.

1.3 Finitely generated groups

A finitely generated group Γ is a group that has some finite generating set S such that every element
of Γ can be written as the combination (under the group operation) of finitely many elements of S
and of inverses of elements S. Most of the applications will be with Γ a finitely presented group.
The finitely generated groups will be endowed with the discrete topology.

Example 1.8.

1. Finite groups, Integer group

2. Symmetric group, Dihedral group, Cyclic group

3. Free group

Surface groups
These are other examples of finitely generated groups which are fundamental groups of oriented

surfaces.
Let g ≥ 0 and n ≥ 0 be integers. A group is called a surface group if it is isomorphic to

πg,n :=

〈
a1, b1, · · · , ag, bg, c1, · · · , cn :

g∏
i=1

[ai, bi] =

n∏
j=1

cj

〉

with [ai, bi] = aibia
−1
i b−1

i the commutator of ai and bi. The case n = 0, where
∏g

i=1[ai, bi] = 1,
is called a closed surface group.

For n ≥ 1, πg,n is isomorphic to the free group with 2g + n− 1 generators. The surface groups
are abelian in a very few cases. For example, πg,0 is non-abelian for g ≥ 2.

The following result gives the reason for the name of these groups.

Theorem 1.9. Let Σg,n be a connected orientable topological surface of genus g ≥ 0, with n ≥ 0
punctures. The fundamental group of Σg,n, π1(Σg,n), is isomorphic to πg,n.

Proof. For the case n = 0 see Theorem 2.3.15 of [Lab13]. For the general case, a sphere with n ≥ 1
punctures is homotopy equivalent to the wedge of n−1 circles. So, its fundamental group is the free
group with n− 1 generators. Now, a surface of genus g with one puncture is homotopy equivalent
to the wedge of 2g circles. Thus, its fundamental group is the free group with 2g generators. On
the other hand, Σg,n is the union of Σg,1 and Σ0,n+1. To achieve the result apply Van Kampen
Theorem (see for instance [Hat02]).
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2 Representation Varieties

Let Γ be a finitely generated group, and let G be a (real or complex) Lie group. The object studied
in this section consists of the set of homomorphisms from Γ to G. More concretely,

Definition 2.1. For a finitely generated group Γ and a Lie group G, the representation variety
associated to Γ and G, denoted by Hom(Γ, G), is the set

Hom(Γ, G) = {ρ : Γ → G : ρ is a group homomorphism}

Topology
The representation variety Hom(Γ, G) can be endowed with the subspace topology induced by

the compact-open topology in the space of continuous functions Γ → G, where Γ is equipped with
the discrete topology.

The sets
V (K,U) := {f : Γ → G : K ⊂ Γfinite, U ⊂ G open, f(K) ⊂ U}

form a sub-basis for the compact-open topology on Hom(Γ, G).
Fixing the generators {γ1, · · · , γn} of Γ, it can be considered the following subspace of Gn:

X(Γ, G) = {(ρ(γ1), · · · , ρ(γn)) : ρ ∈ Hom(Γ, G)} ⊂ Gn

Proposition 2.2. If G is a Lie group endowed with an analytic atlas, then X(Γ, G) is an analytic
subvariety of Gn homeomorphic to Hom(Γ, G). In particular, Hom(Γ, G) has a natural analytic
variety structure and the structure does not depend on the choice of generators of Γ.

Proof. Consider a set of relations {ri}, which can be infinite for the generators γ1, · · · , γn. The
relations are defined by multiplications and inverse operations on G, which are analytic, thus they
are also analytic maps ri : Gn → G. Now, X(Γ, G) will be an analytic subset of Gn since the
previous relations will induce relations of the form ri(g1, · · · , gn) = 1, for gi ∈ G, in Gn. It is easy
to see that a group homomorphism ρ : Γ → G can be determined by the image of a set of generators
of Γ. From this idea, there is a bijection, Ψ, between Hom(Γ, G) and X(Γ, G):

Ψ : Hom(Γ, G) −→ X(Γ, G)

ρ 7−→ (ρ(γ1), · · · , ρ(γn))

This bijection is a homeomorphism, as will be seen next. Pick a collection of open sets U1, · · · , Un

of G, then

Ψ−1(X(Γ, G) ∩ (U1 × · · · × Un)) = Hom(Γ, G) ∩
n⋂

i=1

V ({γi}, Ui)

Now, any element γ ∈ Γ written in terms of generators will determine an analytic function Γ :
Gn → G (recall that Ψ is a bijection). Let K ⊂ Γ be a finite set and U ⊂ G an open set, so

Ψ(Hom(Γ, G) ∩ V (K,U)) = X(Γ, G) ∩
⋂
k∈K

γ−1(U)

Concluding that Ψ and its inverse are continuous, hence it is a homeomorphism.
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Choosing another set of generators for Γ, {γ′1, · · · , γ′n}, and denoting by X ′(Γ, G) the analogous
to X(Γ, G) for this new set, it can be defined a map between these two as the following composition

X(Γ, G) → Hom(Γ, G) → X ′(Γ, G)

which is an isomorphism of analytic varieties. Indeed, as γ′i is a word in the generators γ1, · · · , γn,
thus ρ(γ′i) is a word in ρ(γ1), · · · , ρ(γn). Thus, it is analytic as word maps are so.

With a similar proof with minor adaptations, we get for G a real or complex algebraic group

Proposition 2.3. If G is a real or complex algebraic group, then X(Γ, G) is an algebraic subvariety
of Gn. In particular, Hom(Γ, G) has a natural structure of real or complex algebraic variety and
the structure does not depend on the choice of generators of Γ.

Remark 2.4.

1. The group Γ can be defined by an infinite number of relations, thus the number of equations
defining X(Γ, G) may also be infinite. Using Hilbert’s basis theorem, we know that any alge-
braic variety over a field can be described as the zero locus of a finitely number of polynomial
equations.

2. If G is a real or complex algebraic group then it is also a Lie group. This implies that
the representation variety Hom(Γ, G) has the two structures, of an analytic variety and an
algebraic variety. For the analytic structure, the topology is called the standard topology and
for the algebraic, the Zariski topology. The first one is always Hausdorff, the second one is
coarser than the standard topology (the Zariski open sets are open in the standard topology,
because the polynomials are continuous functions). A nonempty Zariski open set is dense in
both topologies.

2.1 Symmetries: conjugation action of G.

In this section, we will describe symmetries of the representation variety Hom(Γ, G). Two natural
ones are obtained by the right action of the automorphism group of Γ, Aut(Γ), by pre-composing
and the left action of the automorphism group of G, Aut(G), by post-composing.

These actions preserve the analytic or algebraic structure of Hom(Γ, G), this is a consequence
of the following more general property.

Proposition 2.5. Let Γ, Γ1 and Γ2 be finitely generated groups and G, G1 and G2 be a Lie or
algebraic groups.

1. If f : Γ1 → Γ2 is a morphism, then the induced map f∗ : Hom(Γ1, G) → Hom(Γ2, G) is an
analytic or regular map.

2. If g : G1 → Γ2 is a morphism, then the induced map g∗ : Hom(Γ, G1) → Hom(Γ, G2) is an
analytic or regular map.

There is an important normal subgroup of Aut(G), whose elements are called inner automor-
phisms of G defined by conjugating by an element of G, denoted by Inn(G). More concretely, an in-
ner automorphism of G has the following form: let ρ ∈ Hom(Γ, G) and g ∈ G, (g ·ρ)(γ) = gρ(γ)g−1,
for every γ ∈ Γ. As conjugating by elements of Z(G) gives a trivial action, Inn(G) ∼= G/Z(G).
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In the case G is semisimple, Inn(G) is a finite index subgroup of Aut(G). Indeed, assume
first that G is also simply connected, so the map Aut(G) → Aut(g) induced by derivation is an
isomorphism of Lie groups. Because of this, it can be proved if we consider instead Lie algebras. If
g is semisimple, then the Lie algebras of Inn(g) and Aut(g) are isomorphic. Thus, Inn(g) is a finite
index subgroup of Aut(g), consequently the same is true for groups. If G is not simply connected,
consider the universal cover of G, using lifting properties we can conclude the result.

The action of Inn(G) on Hom(Γ, G) is important in many cases, for example the holonomy
representations associated to structures on surfaces that are defined up to conjugation by an element
of G. So, it worths studying the quotient

Hom(Γ, G)/Inn(G)

This is a first idea of what will be a character variety associated to Γ and G.

2.2 Tangent spaces

In this section, we will study the tangent spaces of the representation varieties. Notice that these
ones are not smooth in general. First, we must fix the notion of tangent space suitable for this
case. It will be more adequate one that does not depend on choosing generators of Γ. In order to
achieve such definition we use ringed spaces concept ([Kar92; Law09]).

Definition 2.6. A real valued ringed space is a toplogical space X with a sheaf O of real valued
functions called admissible functions.

For x ∈ X, let Mx denote the germs of admissible functions at x that vanish at x.
The Zariski tangent space to X at x ∈ X is the vector space

(Mx/M2
x)

∗

This definition generalizes the notion of tangent spaces for manifolds and of Zariski tangent
spaces for analytic and algebraic varieties.

Example 2.7. 1. Smooth manifolds with the sheaf of smooth real valued functions

2. Analytic varieties with the sheaf of analytic functions

3. Algebraic varieties with the sheaf of regular maps

We will consider Hom(Γ, G) as a submanifold of the infinite product GΓ, in this way the em-
bedding does not depend on fixing generators of Γ. A function GΓ → R is said to be locally smooth
if it is locally a smooth function of a finite number of coordinates. Define the sheaf C∞(GΓ) of
locally smooth functions on GΓ as the direct limit of the sheaves C∞(GI) of smooth functions on
the manifold GI , with I ⊂ Γ a finite subset (I ⊂ J ⊂ Γ finite subsets, C∞(GI) ↪→ C∞(GJ)). In this
way, GΓ with the sheaf C∞(GΓ) is a real valued ringed space.

Proposition 2.8. The Zariski tangent space to GΓ at any point is isomorphic to gΓ.

Proof. The Zariski tangent space to GΓ at a point f , TfG
Γ, can be characterized as the vector

space of tangent vectors to smooth deformations of f . Let exp : g → G be the Lie exponential
map. Consider u ∈ gΓ and the 1-parameter family of maps

exp(tu)f
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which defines a deformation of f . Can be shown that this map is an isomorphism between TfG
Γ

and gΓ.

The representation variety can be defined by the equations

Fα,β(f) := f(αβ)f(β)−1f(α)−1 = 1, ∀α, β ∈ Γ

The sheaf of smooth functions on Hom(Γ, G) is defined as follows: let U ⊂ GΓ be an open
subset, consider the open subset Hom(Γ, G) ∩ U of Hom(Γ, G) and assign to it the quotient ring

C∞(U)/(ϕ ◦ Fα,β : α, β ∈ Γ)

with ϕ : G → R a smooth function such that ϕ(1) = 0. So, Hom(Γ, G) can be equipped with a
ringed space structure.

Let us see, in the next proposition, that choosing generators for Γ will induce the same structure

Proposition 2.9. If a set of n generators is fixed for Γ and Fn is the free group with n generators,
then the following diagram is commutative

Hom(Γ, G) Gn

GΓ GFn

The inclusion Hom(Γ, G) ⊂ GΓ of ringed spaces induces an inclusion of the Zariski tangent
spaces TρHom(Γ, G) ⊂ gΓ, for ρ ∈ Hom(Γ, G). The space TρHom(Γ, G) is the intersection of
the kernels of the linear forms DρFα,β : gΓ → g, for all α, β ∈ Γ. By definition, for v ∈ gΓ and
ρ ∈ Hom(Γ, G),

DρFα,β(v) =
d

dt

∣∣∣∣
t=0

ϕα,β(exp(tv)ρ)

=
d

dt

∣∣∣∣
t=0

exp(tv(αβ))ρ(αβ)ρ(β)−1 exp(−tv(β))ρ(α)−1 exp(−tv(α))

= v(αβ)− v(α)−Ad(ρ(α))v(β)

From this computation, the Zariski tangent space of Hom(Γ, G) at a point ρ can be characterized

TρHom(Γ, G) = {v ∈ gΓ : v(αβ) = v(α) + Ad(ρ(α))v(β), ∀α, β ∈ Γ}

Tangent space as cocycles
Another characterization of the tangent space can be given in terms of group cohomology. For

that, an element ρ ∈ Hom(Γ, G) endows g with a Γ-module structure defined by

Γ
ρ−→ G

Ad−−→ Aut(g)

The Lie algebra g seen as a Γ-module will be denoted by gρ.
Now, consider the cochain complex given by

Ck(Γ, gρ) := Map(Γk, gρ), k ≥ 0
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where Map(Γk, gρ) is the Γ-module of set-theoretic maps from Γk to gρ. The differential map
∂k : Ck−1(Γ, gρ) → Ck(Γ, gρ) is defined as follows, for u ∈ Map(Γk, gρ) and (γ1, · · · , γk) ∈ Γk

(∂ku)(γ1, · · · , γk) := γ1 · u(γ2, · · · , γk) +

+
k−1∑
i=1

(−1)iu(γ1, · · · , γi−1, γiγi+1, γi+2, · · · , γk) + (−1)ku(γ1, · · · , γk−1)

It is true that ∂k∂k−1 = 0, for every k ≥ 1. Denote by Zk(Γ, gρ) and B
k(Γ, gρ) the sets of k-cocycles

and of k-coboundaries of the complex, respectively. The space of 1-cocycles is

Z1(Γ, gρ) = {v ∈ gΓ : v(γ1γ2) = v(γ1) + Ad(ρ(γ1))v(γ2), ∀γ1, γ2 ∈ Γ}

which is equal to the tangent space TρHom(Γ, G).
The space of 1-coboundaries is

B1(Γ, gρ) = {v ∈ gΓ : ∃ζ ∈ g, v(γ) = ζ −Ad(ρ(γ))ζ, ∀γ ∈ Γ}

2.3 Smooth points

A point x of an analytic vatiety X ⊂ Rn is said to be a smooth point if there exists an open
neighbourhood U ⊂ X of x such that U is an embedded submanifold of Rn.

We can use the Implicit Function Theorem, and characterize the smooth points as being the
points where the rank of the Jacobian is maximal. This is equivalent to the dimension of the
Zariski Tangent space of X at a smooth point being minimal. If every point of an analytic variety
is smooth, then it is an analytic manifold.

Representation varieties are analytic varieties. If Γ is a free group, then Hom(Γ, G) is an analytic
manifold because there is no relations in its definition.

The following property is satisfied

Proposition 2.10. The set of smooth points of Hom(Γ, G) is invariant by the conjugation action
of G.

Proof. The conjugation action of G is analytic. Thus, it maintains smooth neighbourhoods of the
points contained in Hom(Γ, G). Other way is to notice that the Zariski tangent spaces at ρ and
gρg−1 are isomorphic as Γ-modules (v ∈ Z1(Γ, gρ) 7→ Ad(g)v ∈ Z1(Γ, ggρg−1)), then they have the
same dimension.

For the case where where Γ = πg,0 is a closed surface group and G is a reductive Lie group, it is
possible to characterize the smooth points explicitly (see [Gol84]). Denote by Z(ρ) the centralizer
of ρ(Γ) inside G, which is called the stabilizer of ρ for the conjugation action.

Theorem 2.11. Let G be a reductive Lie group, then the dimension of the Zariski tangent space
to Hom(πg,0, G) at ρ is

dimZ1(πg,0, gρ) = (2g − 1) dimG+ dimZ(ρ)

The representations ρ such that dimZ(ρ) = dimZ(G) minimize the dimension of their Zariski
tangent space.
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Proof. To compute the dimension of the of the Zariski tangent space to Hom(πg,0, G) at ρ, we
use its identification with Z1(πg,0, gρ). The group cohomology of πg,0 with coefficients in gρ is
isomorphic to the de Rham cohomology of the surface Σg,0 with coefficients in the adjoint bundle
of the principal bundle G-bundle associate to ρ (see section 4. or [Gol84]). Thus, it vanishes in
degrees larger than 2.

It can be proved that the Euler characteristic

dimH0(πg,0, gρ)− dimH1(πg,0, gρ) + dimH2(πg,0, gρ)

does not depend on ρ, because it can be expressed as the alternating sum of the dimensions of the
spaces of cochains. These ones in simplicial cohomology with local coefficients have finite dimension
and are independent of ρ as the structure of the πg,0-module of gρ) it is only used in the differential.

So, if we choose ρ as the trivial representation, then gρ) is a trivial πg,0 module and the previous
Euler characteristic will be equal to the Euler characteristic of Σg,0 multiplied by dimG. Thus,

dimH1(πg,0, gρ) = (2g − 2) dimG+ dimH0(πg,0, gρ) + dimH2(πg,0, gρ)

By the Poincaré duality,
H2(πg,0, gρ) ≃ H0(πg,0, g

∗
ρ)

∗

As G is reductive, there exists a non-degenerate, Ad-invariant, bilinear form on g, this gives
an πg,0-modules isomorphism gρ) ≃ gρ)

∗. Then, dimH2(πg,0, gρ) = dimH0(πg,0, gρ). On the other
hand, H0(πg,0, gρ) = z(ρ). Hence,

dimH1(πg,0, gρ) = (2g − 2) dimG+ 2dimZ(ρ)

We know dimB1(πg,0, gρ) = dimG− dimZ(ρ). Concluding that

dimZ1(πg,0, gρ) = (2g − 1) dimG+ dimZ(ρ)

By the inclusion Z(G) ⊂ Z(ρ), we get dimZ(G) ≤ dimZ(ρ), then ρ minimizes the dimension of its
Zariski tangent space if and only if dimZ(G) = dimZ(ρ).

2.4 Characterization of orbits

Consider the action of Inn(G) ∼= G/Z(G) on Hom(Γ, G), for an element ρ ∈ Hom(Γ, G), denote by
Oρ the orbit of ρ by this action. Denote by Z(ρ) the centralizer of ρ(Γ) inside G, which is called
the stabilizer of ρ for the conjugation action. This is a closed subgroup of G.

The orbit Oρ is a smooth manifold isomorphic to the quotient G/Z(ρ). A smooth deformation
of ρ inside Oρ has the form ρt = g(t)ρg(t)−1, with g(t) a smooth 1-parameter family inside G such
that g(0) = 1. The tangent vector to ρt at t = 0 is the coboundary

v(γ) = ζ −Ad(ρ(γ))ζ

for every γ ∈ Γ and where ζ ∈ g is a tangent vector to g(t) at t = 0.
Conversely, if ζ ∈ g, the coboundary v(γ) = ζ − Ad(ρ(γ))ζ is tangent to exp(tζ)ρ exp(−tζ) at

t = 0.
Thus, we can conclude that

TρOρ = B1(Γ, gρ)

11



The following inclusions of ringed spaces

Oρ ⊂ Hom(Γ, G) ⊂ GΓ

induces a chain of inclusions on Zariski tangent spaces

TρOρ TρHom(Γ, G) TρG
Γ

B1(Γ, gρ) Z1(Γ, gρ) C1(Γ, gρ)

≃ ≃ ≃

Denoting by z(ρ) the Lie algebra of Z(ρ), the space of 1-coboundaries, B1(Γ, gρ), can be identi-
fied with the quotient g/z(ρ). So, to compute the dimensions it can be used the following equality

dimB1(Γ, gρ) = dimOρ = dimG− dimZ(ρ)

It is easy to see that the conjugation action of Inn(G) ∼= G/Z(G) on Hom(Γ, G) is not free,
notice that the trivial representation is a fixed point. Other easy thing is that for ρ ∈ Hom(Γ, G),
Z(G) ⊂ Z(ρ).

Consider the subset of Hom(Γ, G) defined by

{ρ ∈ Hom(Γ, G) : Z(ρ) = Z(G)}

This set is invariant by the conjugation action and this action is free on it. Moreover,

Proposition 2.12. The conjugation action on Hom(Γ, G) is locally free (i.e, the stabilizer of every
element is discrete) if and only if dimZ(G) = dimZ(ρ), for every ρ ∈ Hom(Γ, G).

Proof. The conjugation action on Hom(Γ, G) induces a surjective linear map, for each ρ ∈ Hom(Γ, G),
ψρ : Inn(G) → TρOρ, where Inn(G) is the Lie algebra of Inn(G). This map is defined by

ψρ(ζ) =
d
dt

∣∣
t=0

exp(tζ)(ρ).
The conjugation action in Hom(Γ, G) is locally free in ρ if and only if ψρ is injective. The last

will be true, as ψρ is surjective if and only if Inn(G) and TρOρ have the same dimension. The
dimension of Inn(G) is dimG− dimZ(G) and of TρOρ is dimG− dimZ(ρ). Thus, the dimensions
are equal if and only if dimZ(G) = dimZ(ρ).

In the case Γ = πg,0 and G is a reductive Lie group, the smooth points of Hom(πg,0, G) are
exactly those for which the conjugation action is locally free.

2.5 Subsets of representations

The last proposition of the previous subsection motivates the following classes of representations.

Definition 2.13. A representation ρ ∈ Hom(Γ, G) is said to be regular if dimZ(G) = dimZ(ρ)
and is said to be very regular if Z(G) = Z(ρ).

We denote by Homreg(Γ, G) the Inn(G)-invariant subspace of regular representations and by
Homvreg(Γ, G) the Inn(G)-invariant subspace of very regular representations.

12



Example 2.14. The representations ρ : Γ → PSL(2,R) that are not regular (exercise).

In order to know whether two orbits can be separated or not by disjoint open sets in the
topological quotient Hom(Γ, G)/Inn(G), which is crucial for this quotient to have a nice structure,
we introduce the notion of Borel and parabolic subgroups.

Definition 2.15. A Borel subgroup of a complex algebraic group G is a maximal, Zariski closed,
solvable connected subgroup of G. A parabolic subgroup of a real or complex algebraic group G is
a Zariski closed subgroup of G that contains a Borel subgroup over C. A Levi subgroup of a real
or complex algebraic group G is a connected subgroup isomorphic G/Ru(G), where Ru(G) is the
unipotent subgroup of the radical of G.

A subgroup of an algebraic group is said to be irreducible if it is not contained in a proper
parabolic subgroup of G.

Example 2.16. Let G = Gl(n,C). The Borel subgroups of G are those that preserve a full flag
in Cn. For example, the subgroup of upper triangular matrices is a Borel subgroup. The parabolic
subgroups are those that preserve a partial flag in Cn.

Definition 2.17. Let G be an algebraic group. A representation ρ : Γ → G is said to be irreducible
if the image of ρ is not included in a proper parabolic subgroup of G. We denote by Homirr(Γ, G)
the Inn(G)-invariant subspace of irreducible representations.

Remark 2.18.

1. A representation ρ : Γ → G is irreducible if and only if its image is an irreducible subgroup
of G.

2. It can happen that a representation is irreducible over R but reducible over C.

3. If G = Gl(n,C), then ρ is irreducible if snf only if Cn is an irreducible Γ-module. (Example
2.16)

4. If G = Sl(2,C), the irreducible representations can be characterized in terms of traces. In
fact, a representation ρ : Γ → G can be shown to be irreducible if and only if there exists an
element γ ∈ [Γ,Γ] ⊂ Γ, of the commutator of Γ such that Tr(ρ(γ)) ̸= 2. (Lamma 1.2.2 of
[CS83])

For the case of a reductive algebraic group, the irreducible representations have further prop-
erties.

Proposition 2.19 ([Sik12], Propositions 27 and 28). Let G be a reductive algebraic group. Then

1. Homirr(Γ, G) ⊂ Homreg(Γ, G). (the centralizer of an irreducible subgroup of G is a finite
extension of Z(G))

2. Homirr(Γ, G) is Zariski open in Hom(Γ, G).

3. If Γ = πg,n is a surface group, then Homirr(πg,n, G) is dense in a nonempty set of irreducible
components of Hom(πg,n, G).

The important result is the following.
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Theorem 2.20 ([JM87]). Let G be a reductive algebraic group. The conjugation action on Homirr(Γ, G)
is proper.

Representations that are irreducible and very regular are called good representations; this notion
was introduced by Jonhson and Milson in [JM87]. We denote by Homgd(Γ, G) the conjugation
invariant subspace of Hom(Γ, G) of good representations.

According to the previous results, the conjugation action on Homg(Γ, G) is free and proper.

Proposition 2.21. Let G be a reductive algebraic group.

1. Homgd(Γ, G) is Zariski open in Hom(Γ, G).

2. If Γ = π1Σg,0,

(a) Homgd(π1Σg,0, G) is an analytic manifold of dimension (2g − 1) dimG+ dimZ(G).

(b) The conjugation action on Homgd(π1Σg,0, G) is proper and free.

(c) The quotient Homgd(π1Σg,0, G)/Inn(G) is an analytic manifold of dimension (2g−2) dimG+
2dimZ(G) (always even).

There is a generalization of irreducible representation, that is, of reductive (or completely
reducible) representation.

In order to give this new subset of representations, we introduce the following definitions for an
algebraic group.

Definition 2.22. 1. An algebraic group is called linearly reductive if all its finite-dimensional
representations are completely reducible, i.e, are a sum of simple (the only subrepresentations
are the trivial and itself) subrepresentations.

2. A subgroup of an algebraic group is called completely reducible if its Zariski closure is linearly
reductive.

It can be shown that over the real or complex numbers, an algebraic group is linearly reductive
if and only if its identity Zariski component is reductive (see Corollary 22.43 of [Mil17].

Now, we have the notion of a reductive representation.

Definition 2.23. Let G be an algebraic group. A representation ρ : Γ → G is called reductive or
completely reducible if ρ(Γ) ⊂ G is completely reducible. The conjugation invariant subspace of
reductive representations is denoted by Homred(Γ, G).

Example 2.24. A representation ρ : Γ → Gl(n,C) is reductive if and only if Cn is a completely
reducible Γ-module, i.e., a direct sum of irreducible Γ-modules. This is equivalent to have that
every Γ-invariant subspace of Cn has a Γ-invariant complement.

Proposition 2.25. Let G be an algebraic group. A representation ρ : Γ → G is reductive if and
only if ρ(Γ) is contained in a parabolic subgroup P of G then it is contained in a Levi subgroup of
P .

For a reductive algebraic group, we have the following relations between these different types
of representation.
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Proposition 2.26. Let G be a reductive algebraic group. Then,

1. Homirr(Γ, G) ⊂ Homred(Γ, G)

2. Homirr(Γ, G) = Homred(Γ, G) ∩Homreg(Γ, G)

Also, for the reductive algebraic group case, a reductive representation has another characteri-
zation.

Proposition 2.27. Let G be a reductive algebraic group. A representation ρ : Γ → G is reductive
if and only if the conjugation orbit Oρ of ρ is closed in Hom(Γ, G).

A consequence of this property is that the topological quotient

Homred(Γ, G)/Inn(G)

is a T1 space. Moreover, it can be proved that it is also Hausdorff (see [RS90]).

3 Character varieties

A first example of a Character variety is the quotient Hom(Γ, G)/Inn(G) endowed with the quotient
topology. In this section, we will describe other ways to perform the quotient such that more
interesting geometrical and topological properties will be satisfied by it.

As noted above, the conjugation action considered in the quotient Hom(Γ, G)/Inn(G) is, in
general, not free and proper.

Recall that a topological space X is T1 if for any pair of different points of X, one is in an open
set that does not contain the other point, this is equivalent to all the points of X being closed. A
topological space X is T2 or Hausdorff if for any pair of different points in X, there are two disjoint
open sets such that each contains one of the points.

One property that must be satisfied by a character variety is that there must be a projection
from Hom(Γ, G) that factors through Hom(Γ, G)/Inn(G). So, we look for the largest possible finer
quotient of Hom(Γ, G)/Inn(G) with a nice topology, regular properties, or that has a structure of
a variety of a smooth manifold.

Some examples

1. Consider G an abelian algebraic group. In this case, the conjugation action is trivial. So,

Hom(Γ, G)/Inn(G) = Hom(Γ, G)

Any representation Γ → G factorizes through the abelianization Γab := Γ/[Γ,Γ] of Γ. Then,
Hom(Γ, G) = Hom(Γab, G).

2. If G = R and Γ = π1X is the fundamental group of some connected topological space X,
there is a particular interpretation of Hom(Γab, G). By Hurewicz Theorem, the abelianization
of π1X is isomorphic to the first cohomology group H1(X,R) of X. Thus,

Hom(π1(X),R) = Hom(H1(X,R),R) = H1(X,R)

where H1(X,R) is the vector space given by the first cohomology of X.

3. Consider Γ = Z, a free group with one generator. In this case, Hom(Z, G)/Inn(G) is the
space of conjugacy classes of G. See example with G = PSl(2,R). This is not a Hausdorff
topological space, not even T1.
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3.1 Hausdorff and T1 quotient

First, we give a way to construct the largest Hausdorff quotient space. In order to achieve this, let
us define an equivalence relation.

ConsiderX a topological space and all equivalence relations ≈ onX such thatX/ ≈ is Hausdorff
(such a relation exists, for example identify all the points of X).

Define the following equivalence relation in X: x ∼ y if and only if x ≈ y for all ≈.
The quotient Haus(X) := X/ ∼ is called the Hausdorffization of X. This space is a Hausdorff

topological space and has the following universal property: if Y is a Hausdorff topological space,
then any continuous map X → Y factors uniquely through the projection X → Haus(X).

Denote by [x] the equivalence class defined by the relation ∼.

Proposition 3.1. Let x, y ∈ X such that [x] ∩ [y] ̸= ∅ then x ∼ y.

Proof. As Haus(X) is Hausdorff then its points are closed. Then, the equivalence classes for ∼ are
closed subsets of X. If x ̸∼ y, then the equivalence classes of x and y are closed disjoint subsets of
X.

The Hausdorff character variety of a finitely generated group Γ in a Lie group G is defined as

RepHaus(Γ, G) := Haus (Hom(Γ, G)/Inn(G))

See reference [Mon16] where this quotient is used.

In [RS90], a T1 quotient is defined. For a topological group G acting on a space X, denote the
G-orbit of x ∈ X by Ox. We introduce the following assumption:

For every x ∈ X, Ox ⊂ X contains a unique closed G-orbit. (3.2)

We denote the set of closed orbits for the action of G on X by X//G and define the map
π : X → X//G which sends x to the unique closed orbit contained in Ox. The topology on X // G
is defined, such that π is a quotient map, that is, Z ⊂ X//G is closed if and only if π−1(Z) ⊂ X is
closed. This is equivalent to consider the next equivalence relation on X

x ∼ y if and only if Ox ∩ Oy ̸= ∅

Proposition 3.3.

1. X//G is homeomorphic to X/ ∼.

2. X//G satisfies the following universal property: for every T1 space Y , any continuous map
X → Y that is constant on G-orbits factors uniquely through π : X → X//G.

3. There exists a natural surjective continuous map X//G↠ Haus(X/G) such that

X X/G

X//G Haus(X/G)

π

commutes
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If X//G is T1, then it will be the largest T1 quotient of X. If X//G is Hausdorff then it is
homeomorphic to Haus(X).

Returning to the G-conjugation action on Hom(Γ, G) and assuming property 3.2, the T1 char-
acter variety of Γ in G is defined to be

RepT1(Γ, G) := Hom(Γ, G)//Inn(G)

It does not have to be a T1 space, but it always lies over any T1 quotient of Hom(Γ, G) (Proposition
3.3). Also, there is a surjection

RepT1(Γ, G) ↠ RepHaus(Γ, G)

which is a homeomorphism if RepT1(Γ, G) is Hausdorff.

3.2 Algebraic quotient

This quotient is based on the structure of the group G, using the so called geometric invariant theory
(GIT). Its construction starts from an algebra of invariant regular functions. Some references to
this subsection are [Dre04], [Lou15] and [Sik12], where more details can be found.

We begin by introducing some notions to describe this construction.

Definition 3.4. A function Hom(Γ, G) → K, where K is a field is said to be an invariant function
if it is invariant under conjugation by G.

For us K ∈ {R,C}. The set Hom(Γ, G) has a structure of an algebraic variety. The algebra of
regular functions on Hom(Γ, G), also called its coordinate ring, is denoted by K[Hom(Γ, G)] and
the subalgebra of invariant regular functions by K[Hom(Γ, G)]G.

The goal is to find a collection of invariant regular functions such that, any invariant regular
function can be written as a polynomial expression in those generating functions.

To construct invariant functions Hom(Γ, G) → K from a conjugation action invariant function
f : G → K, choose an element γ ∈ Γ and define the function fγ : Hom(Γ, G) → K by fγ(ρ) :=
f(ρ(γ)). Consider the case when G is a linear algebraic group, in this case G is isomorphic to a
closed subgroup of Gl(m,K). Examples of conjugation invariant functions include the trace function
and the determinant function. The subalgebra of C[Hom(Γ, G)]G generated by trace functions is
denoted by T (Γ, G).

Example 3.5. Fricke and Vogt in [FV97] proved that C[Hom(Γ,Sl(2,C))Sl(2,C)] is (linearly) gener-
ated by trace functions Trγ , for γ ∈ Γ. A trace function Trγ : Hom(Γ,Sl(2,C)) → C is an invariant
function defined by Trγ(ρ) := Tr(ρ(γ)). In Sl(2,C), the trace relation

Trγ1γ2 +Trγ−1
1 γ2

= Trγ1 +Trγ2

for γ1, γ2 ∈ Γ.

Consider Γ = Fn a free group with n generators, in this case, we have Hom(Fn,Mm(K)) ∼=
Mm(K)n. The function Mm(K)2 → K defined by (X,Y ) → Tr(XY ⊤) is invariant under SO(m,K)-
conjugation but not under Sl(m,K)-conjugation.
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Procesi in [Pro76], could prove in several cases of G, that K[Mm(K)n]G is finitely generated by
trace polynomials.

And if Mm(K) is replaced by another linear algebraic group? It will depend on the cho-
sen group. For example, the function det−1 : Gl(m,C) → C is non-trivial and invariant under
Gl(m,C)-conjugation, but its restriction to Sl(m,C) is the constant function 1. By the Cayley-
Hamilton theorem, the inverse of the determinant can be expressed as a rational function of traces.
It can be shown that C[Hom(Fn,Gl(m,K))Gl(m,K)] is generated by Tr and det−1, for γ ∈ Fn;
C[Hom(Fn, Sl(m,K))Sl(m,K)] is generated by Tr, for γ ∈ Fn (see this and other cases in the notes
[Mar22]).

Let now Γ be a finitely generated group with generators {γ1, · · · , γn}. The embedding

ι : Hom(Γ, G) ↪→ Gn = Hom(Fn, G)

induces a surjective morphism
ι∗ : C[Gn] ↠ C[Hom(Γ, G)]

This morphism maps invariant functions to invariant functions, thus it restricts to the morphism

(ι∗)G : C[Gn]G ↠ C[Hom(Γ, G)]G

If G is a reductive linear algebraic group, then (ι∗)G is surjective, because of the existence of
the so-called Reynolds operators ([Sik13]). Moreover, if the algebra C[Gn]G is generated by trace
functions, then C[Hom(Γ, G)]G is equal to the subalgebra of C[Hom(Γ, G)]G generated by trace
functions, that is, T (Γ, G). For example, this is true for G = Sl(m,C).

An important result is the Nagata Theorem that says in the case G is a reductive algebraic
group over C, then C[Hom(Γ, G)]G is finitely generated (see, for instance, [Dol03], Theorem 3.3).
In this case, there is an algebraic variety called the spectrum of C[Hom(Γ, G)]G and denoted by

RepGIT(Γ, G) := Spec(C[Hom(Γ, G)]G)

whose algebra of regular function is C[Hom(Γ, G)]G. The points of this variety belong to the image
of Hom(Γ, G) in a family of generators of C[Hom(Γ, G)]G. It is called the GIT character variety of
Γ in the reductive group G and it is also denoted by Hom(Γ, G)//G.

The GIT character variety has the structure of a complex algebraic variety, it is a Hausdorff space
for the Euclidean topology. The inclusion C[Hom(Γ, G)]G ⊂ C[Hom(Γ, G)] induces a surjective
morphism

p : Hom(Γ, G) ↠ Hom(Γ, G)//G

Next, we give some properties of this quotient.

Proposition 3.6.

1. (Universal property) For every algebraic variety Y , any morphism Hom(Γ, G) → Y that is
constant on G-orbits factors uniquely through p.

2. For any representations ρ1, ρ2 ∈ Hom(Γ, G), p(ρ1) = p(ρ2) if and only if Oρ1 ∩ Oρ2 ̸= ∅.

3. The fibers of p contain a unique closed orbit.
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From these properties, we can conclude that the GIT quotient coincides with the T1 character
variety and also with the Hausdorff character variety, that is,

Hom(Γ, G)//G ∼= RepT1(Γ, G) ∼= RepHaus(Γ, G)

Another way to characterize GIT character variety is in terms of the notion of stability on
representations.

Definition 3.7. Let G be an algebraic group and Γ a finitely generated group. A representation
ρ : Γ → G is

1. polystable if Oρ is closed.

2. stable if it is polystable and regular.

We denote by Homps(Γ, G) (resp. Homs(Γ, G)) the conjugation invariant polystable (resp.
stable) representations.

In the case of a reductive algebraic group, as has been seen previously, ρ ∈ Hom(Γ, G) is
polystable if and only if it is reductive, and it is stable if and only if it is irreducible. Also, the
following result is valid

Theorem 3.8. Let G be a reductive complex algebraic group. Then we have the homeorphism
between topological quotient

Homps(Γ, G)/Inn(G) = Homred(Γ, G)/Inn(G) ∼= Hom(Γ, G)//G

And Hom(Γ, G)//G contains the Zariski open subset Homs(Γ, G)/Inn(G) = Homirr(Γ, G)/Inn(G).

Proof. Polystable representations have a closed orbit under the Inn(G)-action by definition. Thus,
the projection p factors through the injective map

Homps(Γ, G)/Inn(G) → Hom(Γ, G)//G

This map is also surjective.

3.3 Strong Deformation Retractions

In this subsection, G will always be a connected, reductive, linear algebraic group over C. It can
be seen as a closed subgroup of a Gl(n,C).

We will also consider compact Lie groups:

Definition 3.9. A compact Lie group is a topological group K that is also a compact smooth
manifold, such that group operations

µ : K ×K → K, µ(g, h) = gh, and ι : K → K, ι(g) = g−1

are smooth maps (that is, of class C∞).
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In other words, a compact Lie group K is a finite-dimensional Lie group whose underlying
topological space is compact and for which the group structure is compatible with the differentiable
structure. It is also a real algebraic group which embeds in some O(n,R) (Peter-Weyl Theorem).
Its points are defined by an ideal of the coordinate ring R[O(n,R)].

We call complexification of K and denote by KC the complex zeros of the ideal that defines K.
This will be a complex linear subgroup of O(n,C) with coordinate ring C[G] = R[K]⊗R C.

There is another equivalent characterization for G to be reductive (see [BD85]).

Proposition 3.10. A connected linear algebraic group over C is reductive if and only if it is the
complexification of a compact Lie group.

Example 3.11. For example, consider the unitary group U(n) = {M ∈ Gl(n,C)|MM
⊤

= In}
which is a compact Lie group. If M = A+

√
−1B, we have that,

U(n) ∼=
{(

A B
−B A

)
∈ GL(2n,R)|AtA+BtB = I, AtB −BtA = 0

}
which in Gl(2n,C) is isomorphic to{(

k 0
0 (k−1)⊤

)
∈ GL(2n,C)| k ∈ U(n)

}
If k is arbitrary in Gl(n,C), it is true that U(n)C = Gl(n,C). So U(n) is the real locus of

Gl(n,C). Similarly, SU(n)C = SL(n,C).

Let K be a compact Lie group, consider the representation variety Hom(Γ,K) and the conju-
gation action of K on it. As K is compact, the orbits will be compact and then closed. So, it can
be considered the quotient

Hom(Γ,K)/K

which is Hausdorff. We will call it the character variety of Γ in K. It is not an algebraic variety,
instead it is a semi-algebraic variety, that is, a finite union of sets each determined by a finite
number of polynomial inequalities.

More general, if S is a real affine algebraic K-variety, then there is an equivariant closed embed-
ding S ↪→W , where W is a real representation of K. Let R[W ]K be the ring of K-invariant in the
ring R[W ]. It is known that this ring is finitely generated by polynomials p1, · · · , pd and the cor-
responding map P = (p1, · · · , pd) : S → Rd is proper and induces a homeomorphism S/K ∼= P (S).
There exists an ideal I such that R[S]K ∼= R[p1, · · · , pd]/I. Let ZR(I) be the real zeros of the
generators of I as a subset of Rd. Can be proven that S/K is a closed semi-algebraic subset of
ZR(I) (see [Sch89; PS85]).

Let G be the complexification of K, which will be a reductive linear algebraic group. Moreover,
K will be a maximal compact subgroup of G. It can be assumed that K ⊂ O(n,R) by the Peter-
Weyl Theorem and then G ⊂ O(n,C). Since K ⊂ G, this implies that Hom(Γ,K) ⊂ Hom(Γ, G)
and as G is reductive it is known that C[Hom(Γ, G)]G = C[Hom(Γ, G)]K . Consequently, the real
and the imaginary parts of a set of generators for C[Hom(Γ, G)]G give a set of generators for
R[Hom(Γ,K)]K .

Example 3.12. Let Γ = Fr and K = SU(n), then R[Hom(Fr,SU(n))]
SU(n) is generated by the

real and imaginary parts of trace functions.
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Every semi-algebraic set admits a cellular decomposition, indeed

Theorem 3.13. Let X be a closed and bounded semi-algebraic set. Then for any family {Xi}
of semi-algebraic subsets of X, there exists a cellular decomposition of X such that each Xi is a
sub-complex.

See [BCR98] on page 214 for a proof. There is an inclusion as CW complexes ([FL13] Proposition
4.5): ιG : Hom(Γ,K)/K ↪→ Hom(Γ, G)//G.

For simplicity, we will denote Hom(Γ, G)//G (resp. Hom(Γ,K)/K) by XΓ(G) (resp. XΓ(K)).
In this subsection, we want to explore when it is true that XΓ(G) strongly deformation retracts

onto XΓ(K), or XΓ(K) is a strong deformation retract of XΓ(G).

Definition 3.14. Let X be a topological space and A ⊂ X a subspace. We say A is a strong
deformation retraction of X if there is a continuous map H : [0, 1]×X → X such that

1. H(0, x) = x, ∀x ∈ X

2. H(t, a) = a, ∀a ∈ A

3. H(1, x) ∈ A, ∀x ∈ X

The map H is called a strong deformation retraction of X onto A. In this case, we say A is a strong
deformation retract (SDR) of X.

A strong deformation retraction of X onto A is a homotopy between the identity of X and j ◦r,
where r is a retraction of X to A and j is the inclusion map. If A is a strong deformation retract
of X, then A and X have the same homotopy type.

We give the following definition introduced in [FL24].

Definition 3.15. The finitely generated group Γ is called flawed if ιG : XΓ(K) ↪→ XΓ(G) is an
SDR, for all choices of G. It is called flawless if ιG is not an SDR for any non-abelian G.

Let us give a first example.

Proposition 3.16. If Γ is a finite group, then ιG is a homeomorphism.

Proof. As Γ is finite, then each ρ ∈ Hom(Γ, G) has finite image and so it is polystable, thus
XΓ(G) = Hom(Γ, G)/G. Since the image is also compact, it is contained in a maximal compact
subgroup of G. Choose a maximal compact subgroup K of G. All maximal compact subgroups of
G are conjugate, so for every ρ ∈ Hom(Γ, G), there exists g ∈ G such that gρ(Γ)g−1 ⊂ K. By this,
ιG is surjective. Furthermore, XΓ(K) is compact, so ιG is a homeomorphism.

Example 3.17.

1. Finite groups are flawed. It is a consequence of the previous stronger fact.

2. Finitely generated free groups are flawed ([FL09]).

3. Finitely generated abelian groups, finitely generated nilpotent groups, virtually nilpotent
Kähler groups are flawed ([FL14; Ber15; BF15]).

21



4. There are examples of finitely generated nilpotent groups Γ and non-reductive complex group
G with maximal compact group K for which XΓ(G) is not homotopic to XΓ(K) ([Ber15]).
This shows that the reductive assumption for G is important for the flawed notion.

5. If Γ is a hyperbolic surface group, that is, is the fundamental group of a closed orientable
surface Σ of the genus greater than or equal to 2 flawless. It is known that XΓ(G) is home-
omorphic to the moduli space of G-Higgs bundles of trivial topological type on a Riemann
surface with underlying topological surface Σ (Nonabelian Hodge correspondence). The result
follows from [FGN19].

6. A finite presentable group isomorphic to a free group of nilpotent groups is flawed ([FL24]).
In particular, PSL(2,Z) is flawed.

Next, we describe a criterion, consequence of the Kempf-Ness Theory ([Nee85; Sch89; KN79]
and Whitehead Theorem ([Hat02; Whi49], to find out if Γ is flawed.

Let V be an affine variety with rational action of G, we can construct the GIT quotient,
similarly as before, V //G. Using Lemma 1.1 of [Kem78], V can be equivariantly embedded as
a closed subvariety of a finite-dimensional complex vector space V, considering a representation
G→ Gl(V).

The vector space V can be equipped with a K-invariant Hermitian inner product ⟨ , ⟩ with norm
∥ ∥. Define, for every v ∈ V, the map pv : G→ R by g → ∥g · v∥2.

Definition 3.18. A vector X ∈ V is a minimal vector for the action of G in V if

∥X∥ ≤ ∥g ·X∥, ∀g ∈ G.

It is denoted by KNG = KN (G,V) the set of minimal vectors, called the Kempf-Ness set in V with
respect to the action of G. (It depends on the choice of ⟨ , ⟩ and is stable under the action of K.)

The following theorem is proved in [Sch89] using [Nee85].

Theorem 3.19. The composition KNG ↪→ V → V //G is proper and induces a homeomorphism

KNG/K → V → V //G

where V → V //G has the analytic topology.
Moreover, KNG ↪→ V is a K-invariant strong deformation retraction.

We apply this theorem to the case of character varieties, consider V = Hom(Γ, G) and G acts
by conjugation on V . Choose r generators for Γ, this allows an embedding

Hom(Γ, G) ⊂ Gr ⊂ V

with V a suitable affine space where the conjugation action extends and Hom(Γ, G) ⊂ V is a closed
G-stable subvariety.

Proposition 3.20. The Kempf-Ness set for Hom(Γ, G) is the closed set given by:

KNG =

{
(g1, · · · , gr) ∈ Hom(Γ, G) :

r∑
i=1

g∗i gi =

r∑
i=1

gig
∗
i

}
.

where g∗i is the conjugate transpose of gi defined by a Cartan involution. Thus, we have the inclusion
Hom(Γ,K) ⊂ KNG. The Kempf-Ness set is K-stable under conjugation.
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See the proof in [Cas+16].
The following intermediate space is needed, let YΓ(G) := Hom(Γ, G)/K, it is also a finite CW

complex. From 3.19,

Theorem 3.21. XΓ(G) ∼= KNG/K and the inclusion KNG/K ⊂ YΓ(G) is a SDR.

Finally, we give the criterion to decide about flawedness of Γ.

Theorem 3.22. Let η : XΓ(K) → YΓ(G) be the natural inclusion. The following statements are
equivalent:

1. Γ is flawed.

2. η induces isomorphisms πn (XΓ(K)) ∼= πn (YΓ(G)), for every n ∈ N.

3. The inclusion XΓ(K) ⊂ KNG/K induces isomorphisms πn (XΓ(K)) ∼= πn (KNG/K), for
every n ∈ N.

The ideas of the proof come from [Cas+16] and more comments in [FL24].
To determine explicitly the Kempf-Ness sets can be a very difficult task, and homotopy groups

are also difficult to compute in general.

This theory can be extended to real groups and real character varieties.

A Lie group G is a real K-reductive Lie group if the following conditions are satisfied :

1. K is a maximal compact subgroup of G;

2. There exists a complex reductive algebraic group G, given by the zeros of a set of polynomials
with real coefficients, such that

G(R)0 ⊆ G ⊆ G(R),

where G(R) denotes the real algebraic group of R-points of G, and G()0 its identity compo-
nent (in the Euclidean topology).

3. G is Zariski dense in G.

Remark 3.23.

1. If G ̸= G(R), then G is not necessarily an algebraic group (for example G = Gl(n,R)0).

2. One can think of both G and G as Lie groups of matrices. We will consider on them the
usual Euclidean topology which is induced from (and is independent of) an embedding on
some Gl(m,C).

3. G(R) is isomorphic to a closed subgroup of some Gl(n,R) (i.e., it is a linear algebraic group).

4. G(R) is a real algebraic group, hence, if it is connected, G = G(R) is algebraic and Zariski
dense in G. Condition 3. in Definition holds automatically if G(R) is connected.

Example 3.24.

1. All classical real matrix groups are in this setting.
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2. G can also be any complex reductive Lie group, if we view it as a real reductive Lie group in
the usual way.

3. As an example which is not under the conditions of Definition, we can consider ˜Sl(n,R),
the universal covering group of Sl(n,R), which admits no faithful finite dimensional linear
representation (and hence is not a matrix group).

Let g be the Lie algebra of G and gC the Lie algebra of G. Fix a Cartan involution θ : gC → gC

which restricts to a Cartan involution

θ : g → g, θ := στ

where σ, τ are involutions of gC that commute. The Cartan involution θ lifts to a Lie group
involution Θ : G→ G whose differential is θ.

The Lie group G is embedded in some Gl(n,C) as a closed subgroup, therefore the involutions
τ, σ, θ and Θ become explicit:

g ⊂ gl(n,R), gC ⊂ gl(n,C), G ⊂ GL(n,R) ⇒ τ(A) = −A∗

where ∗ denotes transpose conjugate, and σ(A) = Ā. The Cartan involution θ is defined by
θ(A) = −A⊤, so that Θ(g) = (g−1)⊤. The involution Θ is also the composition of two commuting
involutions T and S, where T corresponds to τ and S to σ, after some modifications T can be seen
as the complex conjugation composed with inverse transpose and S the complex conjugation.

We will denote by Fix(α) the fixed points of an involution α. Thus, g = Fix(σ) and k′ := Fix(τ)
is the compact real form of gC (so that k′ is the Lie algebra of a maximal compact subgroup, K ′,
of G). The involution σ is called a real structure of G.

The involution θ yields a Cartan decomposition of g: g = k⊕ p where

k = g ∩ k′, p = g ∩ ik′

θ|k = 1 and θ|p = −1. The Lie algebra k is the Lie algebra of a maximal compact subgroup K of
G: K = Fix(Θ) = {g ∈ G : Θ(g) = g}, K = K ′ ∩G, where K ′ is a maximal compact subgroup of
G, with Lie algebra k′ = k⊕ ip. The Lie algebras k and p are such that [k, p] ⊂ p and [p, p] ⊂ k.

We also have a Cartan decomposition of gC: gC = kC ⊕ pC with θ|kC = 1 and θ|pC = −1.
For a finitely generated group Γ, it can be considered an inclusion

Hom(Γ,K) ↪→ Hom(Γ, G)

and so a natural map
ιG : XΓ(K) → XΓ(G)

This map is injective by applying Remark 4.7 of [FL14] to this case which can be done by Section
3.2 of [Cas+16].

Definition 3.25. Let G be a reductive Lie group and Γ a finitely generated group.
The group Γ is said to be strongly flawed if there exists a K-invariant SDR from Hom(Γ, G)

onto Hom(Γ,K), for all choices of G.
The group Γ is said to be G-flawed if XΓ(G) SDR onto ιG(XΓ(K)), for every maximal compact

group K of G.
If Γ is G-flawed for all real reductive groups G, Γ is said to be real flawed.

Theorem 3.26 (Theorem 3.16 of [FL24]). If Γ is real flawed then it is flawed. Conversely, if Γ is
strongly flawed and the SDR commutes with a real structure on G, then Γ is real flawed.
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4 Representations and Principal bundles

4.1 Principal G-bundles

In this subsection, we remind the definition of a principal bundle on closed oriented surfaces.

Definition 4.1. Let E be smooth complex manifold, Σ be a closed oriented surface and G a Lie
group. A principal G-bundle is a triple (E,Σ, π) where π : E → Σ is a smooth submersion. There
is a smooth, transitive, free G-action on each fiber of π. Moreover, there exist an open cover {Ui}
of Σ and G-equivariant diffeomorphisms φi : π

−1(Ui) → Ui ×G such that

(p1 ◦ φi)(π
−1(Ui)) = π(π−1(Ui))

with p1 : Ui ×G→ Ui the projection onto the first factor.

The fiber Ex := π−1(x), for x ∈ Σ is a G-torsor, choosing an element e ∈ Ex, there is a canonical
identification Ex

∼= G.

Example 4.2.

1. Consider a vector bundle V → Σ with rank n, the frame bundle of V is a principal Gl(n,C)-
bundle with fibers Ex = {f : Cn → Vx : f is a linear isomorphism}.

2. Consider the universal cover of Σ, Σ̃, this is a principal π1Σ-bundle over Σ, in this case is a
left action.

Let G be a Lie group and V a smooth manifold with a left smooth action of G on V . Consider
π : E → Σ a G-bundle and the following quotient

E(V ) := (E × V )/G = E ×G V

under the diagonal G-action, where the points of the form (y, v) and (y · g, g−1 · v) are identified,
for all y ∈ E, v ∈ V and g ∈ G. We consider π : E(V ) → Σ given by π(y, v) = π(y), for every
(y, v) ∈ E(V ). This is a fiber bundle. This quotient E(V ) is called associated fiber bundle to the
G-bundle E.

If G is a linear algebraic group and V is a vector space with a G linear action, E(V ) is a vector
bundle with fibers modeled on V .

Example 4.3.

1. Considering the principal π1Σ-bundle over Σ, the universal cover of Σ, Σ̃. A representation
ρ : π1(Σ) → G, with G a complex algebraic group. It can be defined the following principal
G-bundle:

Eρ := Σ̃×ρ G =
(
Σ̃×G

)
/π1(Σ)

where (x̃, g) · γ = (x̃ · γ, ρ(γ)−1 · g), for every (x̃, g) ∈ Σ̃×G and γ ∈ π1(Σ).

If G = Gl(n.C), Eρ is a vector bundle over Σ of rank n.
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2. Considering the adjoint representation Ad : G → Gl(g) and a principal G-bundle E. It can
be constructed the adjoint bundle

Ad(E) := E ×Ad g

It is a vector bundle with fiber isomorphic to g. The equivalence relation is

(y, Y ) ∼ (y, Y ) · g = (y · g,Ad(g)−1(Y ))

for every (y, Y ) ∈ E × g and g ∈ G.

For a principal G-bundle over Σ and V a left G-manifold. The set of sections Ω0(Σ, E(V ))
of the fiber bundle E(V ) are in a bijective correspondence with maps f : E → V such that
f(y · g) = g−1f(y). Indeed, given a section s : Σ → E(V ), a G-equivariant map f : E → V can be
defined as s(x) = (e, f(e)), for e ∈ E(V )x and x ∈ Σ.

A connection on a principal G-bundle E is a g-valued 1-form ωy : TyE → g, for every y ∈ E,
such that

1. ωy

(
Ỹ (y)

)
= Y , for every Y ∈ g, with Ỹ (y) = d

dt

∣∣
t=0

(y exp(tY )).

2. R∗
gωy = Ad(g−1)ωy, for every g ∈ G.

where Rg : E → E, y → y · g, is the right G-action on E.
An equivalent characterization is given by the differential dπ of the projection π : E → Σ. For

y ∈ E, the vertical tangent subspace at y is the subspace of TyE is T v
yE := ker dπy. A connection

is a choice of a complement to T v
yE, for each y ∈ E, called horizontal tangent space and denoted

by T h
y E, that is, TyE = T v

yE ⊕ T h
y E. Moreover, T h

Rg(y)
E = (Rg)∗T

h
y E, for every g ∈ G and y ∈ E.

Given a connection A in a principal bundle E, there is a covariant derivative

dA : Ω0(Σ, E(V )) → Ω1(Σ, E(V ))

on sections of any associated vector bundle E(V ). Indeed, let s ∈ Ω0(Σ, E(V )) and f : E → V the

G-equivariant map as above. A tensorial 1-form d̃A(s) is defined on E by composing df with the
projection TE → T hE defined by the connection A, let dA(s) ∈ Ω1(Σ, E(V )) be the corresponding
E(V )-valued 1-form. The horizontal tangent spaces define a G-invariant distribution on the total
space E, the obstruction for this distribution to be integrable is given by the so called curvature:

F (A) = dA+
1

2
[A,A] ∈ Ω2(E, g)

where the bracket [A,A] is a combination of the wedge product on forms with the Lie bracket on
g. This induces a 2-form on Σ with values in the adjoint bundle, which will be denoted equally by
F (A).

A connection A is said to be flat is F (A) = 0, and a principal G-bundle with a flat connection
is called a flat bundle. This is equivalent to have a discrete structure group and by Frobenius
Theorem

Proposition 4.4. Let E → Σ be a flat bundle and e ∈ Ex for some x ∈ Σ, Then, for any
sufficiently small neighborhood U of X in Σ, there is a unique section s ∈ Ω0(U,E|U ) such that
dA(s) = 0 and s(x) = e.
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4.2 Principal bundles parametrized by representations

Let again Σ be a compact Riemann surface, with fundamental group π1 and ρ : π1 → G be a
representation into a reductive group. The associated bundle construction defines a G-bundle over
Σ associated to ρ. We write this principal G-bundle as Eρ := Y ×ρ G = (Y ×G) /π1, where Y is a
universal cover of X, and the equivalence classes are given by

(y, g) ∼
(
y · γ, ρ(γ)−1 · g

)
, ∀γ ∈ π1, (y, g) ∈ Y ×G. (4.5)

Thus, the space of representations parametrizes holomorphic G-bundles, and we can view this
construction as providing a natural map, that we call the uniformization map:

E : Hom(π1, G)//G → MG

[ρ] 7→ [Eρ]
(4.6)

Here, MG represents the set of isomorphism classes of G-bundles that admit a holomorphic flat
connection. Note that E is well defined on conjugacy classes, since if ρ and σ are conjugate
representations, then Eρ

∼= Eσ. Moreover, by considering the holonomy representation of a given
flat G-bundle, the map E is easily seen to be surjective.

We will consider a special type of representations of π1 := π1(Σ). Fix generators αi, βi,
i = 1, · · · , g, of π1 giving the usual presentation

π1 =
〈
α1, · · · , αg, β1, · · · , βg |

∏g
i=1αiβiα

−1
i β−1

i = 1
〉
.

Let G be a complex connected reductive algebraic group and denote by Fg a fixed free group of rank
g, with g fixed generators γ1, · · · , γg. The reductive group G acts by conjugation in Hom(π1, G)
Denote by e ∈ G, the unit element of G, and consider the short exact sequence of groups,

1 → kerφ ↪→ π1
φ→ Fg → 1

where φ is the natural epimorphism given, in terms of generators, by

φ(αi) = 1, and φ(βi) = γi, ∀i = 1, · · · , g, (4.7)

so that kerφ is the normal subgroup of π1 generated by all αi.

Definition 4.8. A representation ρ : π1 → G is called a Schottky representation if ρ(ker φ) = {e},
for all i ∈ {1, · · · , g}.

Let S denote the set of Schottky representations, it is easy to see that

S∼=Hom(Fg, {e} ×G)∼=Hom(Fg, G)∼=Gg⊂Hom(π1, G)

where the last isomorphism is the evaluation map: (σ : Fg → G) 7→ (σ(γ1), · · · , σ(γg)) . Thus, S is
a smooth and irreducible affine algebraic variety. The conjugation action of the reductive group G
on Hom(π1, G) restricts to an action on S, thus it can be constructed the affine GIT quotient and
also we have the homeomorphisms:

S := S//G ∼= Gg//G ⊂ B = Hom(π1, G)//G

The affine algebraic variety S is also irreducible but singular in general ([CFF19, Proposition 2.4]).
The notion of a good representation allows us to consider smooth points of the GIT quotient.
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Definition 4.9. A representation ρ ∈ S ⊂ Hom(π1, G) is said to be good if ρ is good as an element
of Hom (π1, G).

Denote the set of all good (resp. good Schottky) representations by Homgd (π1, G) (resp. Sgd).
Since these notions are well defined under conjugation, we can define the corresponding quotient
spaces: Bgd := Homgd (π1, G)//G and Sgd := Sgd//G, and, we have the inclusion Sgd ⊂ Bgd.
The set of good representations is Zariski open in S (see for example [Sik12]). By [Mar00, Lemma
4.6] there exists a good representation in Hom (π1, G), that is, Hom

gd (π1, G) ̸= ∅, if X has genus
g ≥ 2. The case g = 1 is slightly different (see Section 9 of [CFF19]).

Proposition 4.10. [CFF19, Proposition 2.13] Let g ≥ 2. Then, there is always a good Schottky
representation ρ : π1 → G. Moreover, such a representation can be defined to take values in a
maximal compact subgroup of G.

Theorem 4.11. Let g ≥ 2. The subsets of good representations Homgd (π1, G) and Sgd are Zariski
open in Hom(π1, G) and S, respectively. A good representation defines a smooth point in the
corresponding geometric quotient. Thus, the geometric quotients Bgd and Sgd are complex manifolds,
and Sgd is a complex submanifold of Bgd.

Proof. By Proposition 4.10 there is a good Schottky representation, for g ≥ 2. By [Sik12, Propo-
sition 33], the subspaces of good representations in Hom(π1, G) and S are Zariski open. Thus,
Homgd (π1, G) and Sgd are open. Since we are considering either surface groups or free groups,
[Sik12, Corollary 50] shows that if ρ ∈ Homgd (π1, G), respectively ρ ∈Sgd, then its class [ρ] is a
smooth point of B, respectively S.

Tangent space and dimension
We begin by describing the tangent space of B, at a good representation, in terms of the group

cohomology of π1. More generally, let Γ denote a finitely generated group and fix ρ ∈ Hom(Γ, G).
The adjoint representation on the Lie algebra of G, g = Lie(G), composed with ρ, that is ρ :
Γ → G → GL (g) , induces on g a Γ-module structure, which we denote by gAdρ . The following
result giving an isomorphism between the Zariski tangent space of the character variety at a good
representation ρ, and the first cohomology group H1

(
Γ, gAdρ

)
, was proved by Goldman [Gol84]

and Martin [Mar00].

Theorem 4.12. For a good representation ρ ∈ Hom(Γ, G) we have,

T[ρ] (Hom (Γ, G)//G) ∼= H1
(
Γ, gAdρ

)
.

The identification between tangent spaces to character varieties and group cohomology spaces is
very useful in many situations. In particular, we can use it to compute the dimension of the complex
manifolds Bgd = Hom(π1, G)

gd//G and Sgd ⊂ Bgd, consisting of classes of good representations,
when Γ is the fundamental group π1 of a surface of genus g. In fact, by [Mar00, Lemma 6.2], we
have, for ρ ∈ Bgd:

dimZ1
(
π1, gρ

)
= (2g − 1) dimG+ dimZ, dimB1

(
π1, gρ

)
= dimG− dimZ,

and also if [ρ] ∈ Bgd, then T[ρ]B ∼= H1
(
π1, gρ

)
and

dimT[ρ]B = (2g − 2) dimG+ 2dimZ (4.13)

We now compute the dimension of S, using the techniques of group cohomology. By the density
result (Theorem 4.11), the computations can be carried out at good representations.
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Proposition 4.14. [CFF19, Proposition 7.1] Let g ≥ 2, the dimension of S is given by dimS =
(g − 1) dimG+ dimZ.

Lagrangian submanifold
Recall that a Lagrangian submanifold L ⊂ M of a symplectic manifold M is a half dimen-

sional submanifold such that the symplectic form vanishes on any tangent vectors to L. It is well
known that character varieties of surface group representations have a natural symplectic structure
([Gol84]), which can be constructed as follows. Consider an Ad-invariant bilinear form ⟨ , ⟩ on g.
Then, using the cup product on group cohomology

∪ : H1
(
π1, gρ

)
⊗H1

(
π1, gρ

)
→ H2

(
π1, gρ

)
, (4.15)

and composing it with the contraction with ⟨ , ⟩ and with the evaluation on the fundamental 2-cycle,
we obtain a non-degenerate bilinear pairing:

H1
(
π1, gρ

)
⊗H1

(
π1, gρ

) ∪−→ H2
(
π1, gρ

) ⟨ , ⟩−→ H2 (π1, C) ∼= C (4.16)

Under the identification of the first cohomology group H1
(
π1, gρ

)
with the tangent space at a good

representation ρ ∈ Bgd, this pairing defines a complex sympletic form on the complex manifold Bgd.
This symplectic form is complex analytic with respect to the complex structure on Bgd coming from
the complex structure on G, and Sgd ⊂ Bgd is Lagrangian.1

Theorem 4.17. The good locus of the Schottky space Sgd is a Lagrangian submanifold of Bgd.

Proof. The restriction of the map (4.15) to H1
(
Fg, gρ

)
is a vanishing map:

∪ : H1
(
Fg, gρ

)
⊗H1

(
Fg, gρ

)
→ H2

(
Fg, gρ

)
= 0,

because free groups have vanishing higher cohomology groups (see [B]). Since the tangent space,
at a good point, to the strict Schottky locus S is identified with H1

(
Fg, gρ

)
(see Theorem 4.12),

this means that the symplectic form, defined above on Bgd, vanishes on any two tangent vectors to
Sgd. Since the dimension of Bgd is twice the dimension of Sgd (see (4.13) and Proposition 4.14), we
conclude the result.

Relation with flat connections
Let X be a compact Riemann surface of genus g, and let M be a compact 3-handlebody of

genus g with boundary ∂M ∼= X such that π1(M,x0) = Fg and let x0 ∈ X ⊂ M . Thus, the
inclusion (X,x0) ↪→ (M,x0) implies the surjective map φ : π1 = π1(X,x0) → π1(M,x0) which
asigns αi → 1, βi → γi. Let FM (G) denote the moduli space of flat G-connections over M .

Theorem 4.18. The moduli space S, of Schottky representations with respect to φ, coincides with
the moduli space FM (G). That is, S = Hom(Fg, G)//G ∼= FM (G).

Proof. By hypothesis π1(M,x0) is a free group of rank g, and π1 has a “symplectic presentation”
in terms of generators αi and βi, i = 1, · · · , g, as in Equation (4.2), so that φ(αi) = 1, φ(βi) =
γi, i = 1, · · · , g, where γ1, · · · , γg form a free basis of π1(M,x0). Thus, a Schottky representation
ρ : π1 → G with respect to φ factors through a representation of π1(M,x0) ∼= Fg via φ. This is

1For a general real Lie group, the analogous pairing defines a smooth (C∞) symplectic structure, see [Gol84].

29



precisely the same as saying that the corresponding flat connection ∇ρ on X extends, as a flat
connection, to the 3-manifold M . Conversely, a flat G-connection on M induces a representation
ρ : π1 → G satisfying ρ(kerφ) = {e}, and thus it is a Schottky representation of π1 (with respect
to φ). This correspondence is well defined up to conjugation by G, and so, we have a natural
identification: S = Hom(Fg, G)//G ∼= FM (G).

4.3 Principal Higgs bundles and branes

Let X be a compact Riemann surface of genus g ≥ 2 and G a connected complex reductive group

Definition 4.19. A pair (E, ϕ) is a G-Higgs bundle on X: if E is a G-bundle on X and ϕ, the Higgs
field, is a holomorphic section of Ad(E) ⊗K. (Ad(E) is the adjoint bundle and K the canonical
bundle of X)

Considering a notion of stability, it can be constructed H, the moduli space of G-Higgs bundles
which has a hyperkähler structure (Hitchin, [Hit87]). Denoting by (I, J,K) the choice of the three
Hyperkähler complex structures we can consider submanifolds of H that are Lagrangian (type A)
or complex (type B) with respect to each of the hyperkähler structures. Kasputin and Witten
([KW07]) called these submanifolds branes, more specifically, (B,A,A), (A,B,A) or (A,A,B)-
branes. They have connection with the geometric Langlands program and mirror symmetry. In
order to obtain branes we can consider anti-holomorphic involutions of X.

Anti-holomorphic involutions
Let X be a compact Riemann surface of genus g ≥ 2 and f : X → X an anti-holomorphic

involution. This induces an involution on B, indeed, fixing x0 ∈ X, f induces an isomorphism
between π1(X,x0) and π1(X, f(x0)) and fixing γ, a path from x0 to f(x0), the composition of
the isomorphism with the conjugation by γ gives an automorphism of π1(X,x0). Changing γ, the
automorphism changes by composing with a inner automorphism. If we consider the good locus,
Bgd, the involution preserves this subvariety. This can be identified with the moduli space of gauge
equivalence classes of flat G-connections on X with reductive holonomy, so we get an involution
of this one by pullback of connections. Now, the moduli space of gauge equivalence classes of flat
G-connections on X is isomorphic to the moduli space of solutions to the Hitchin equations and
this last one is isomorphic to H. (Non-Abelian Hodge Theorem [Hit87; Sim88; Don87; Cor88]) In
[BS14], it is denoted by LG the set of fixed points of the involution in Bgd (or in H) and proved
that

Proposition 4.20. [BS14, Proposition 10] If non-empty, the set of good points of LG is a smooth
Lagrangian submanifold of Bgd.

Following the ideas of [KW07], Baraglia and Schaposnik proved that

Theorem 4.21. [BS14, Theorem 14] LG is an (A,B,A)-brane defined on H.

Higgs bundles and 3-manifolds
Consider now the 3-manifold with boundary X̂ := X×[−1, 1], such that f defines an orientation

preserving involution σ : X̂ → X̂ given by σ(x, t) = (f(x),−t). The boundary of X̂ consists of two
copies of X and the boundary of the compact 3-manifold M := X̂/σ, is homeomorphic to X.

Proposition 4.22. [BS14, Proposition 43] The representations of X in G, which extend to M ,
belong to the (A,B,A)-brane LG.
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This subspace of representations can be viewed as flat G-connections on X that extend to flat
G-connections over M , that is, as FM (G).

4.4 Schottky representations and branes

Suppose now that we have X a compact Riemann surface with an anti-holomorphic involution
f : X → X, defining a real structure on X. Using the construction and notations of the subsection
4.3, let M be the compact 3-manifold whose boundary is homeomorphic to X. Then,

Theorem 4.23. Let f : X → X be an anti-holomorphic involution such that M is a handlebody of
genus g, and let x0 ∈ X ⊂ M be fixed by f . Then, the moduli space S of Schottky representations
with respect to the map φ in (4.7) is included in the Baraglia-Schaposnik brane LG.

Proof. In Proposition 4.22 it is proved the existence of an inclusion: FM (G) → LG ⊂ H. Since, by
Theorem 4.18, S can be identified with FM (G) the result follows.

Remark 4.24. The assumption of the previous proposition is verified when the anti-holomorphic
involution f has as fixed point locus the union of g+ 1 disjoint loops and disconnected orientation
double cover (see [GH81]). In this case, Proposition 4.20 says that the set of smooth points of LG

is a non-empty Lagrangian submanifold of H. In a future work, we plan to further address this
construction.

Under our approach, since there are good Schottky representations for every g ≥ 2, this furnishes
a proof that the set of smooth points of the Baraglia-Schaposnik brane is non-empty.
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5 Exercises and Problems

1. Consider Sl(2,R) and the trace form

Tr : sl2R× sl2R −→ R
(v1, v2) 7−→ Tr(v1v2)

(a) Show that the trace of a matrix is invariant under conjugation, and then the trace will
be Ad-invariant.

(b) Choosing the following basis for sl2R((
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

))
Prove that the trace form is given by 2x1x2 + y1z2 + z1y2, which is a symmetric and non-
degenerate with signature (2, 1).

2. Show that the group SU(p, q) is a real algebraic group, but is not a complex algebraic variety.

3. If G is a Lie group endowed with an analytic atlas, show thatX(Γ, G) is an analytic subvariety
of Gn homeomorphic to Hom(Γ, G). And, in particular, Hom(Γ, G) has a natural structure
of analytic variety and the structure does not depend on the choice of generators of Γ.

4. Consider the group PSl(2,R) which is the adjoint group of Sl(2,R).

(a) Show that PSl(2,R) can be identified with the conjugate of the matrix group SO(2, 1)◦,
which consists of special linear transformations of R3 preserving the Hermitian form
y2 − xz, using the following map

±
(
a b
c d

)
→

a2 2ab b2

ac ad+ bc bd
c2 2cd d2


(b) Conclude that PSl(2,R) can be identified with the group of orientation-preserving isome-

tries of the upper half-plane H.

(c) Show that PSl(2,R) is homeomorphic to the unit tangent bundle of H (This implies that
PSl(2,R) has the topology of an open solid torus).

(d) The action of PSl(2,R) on H extends to its boundary ∂H. Show that this one is isomor-
phic to the projective action of PSl(2,R) on RP1.

(e) Consider the matrices ±
(
a b
c d

)
whose trace in absolute value is smaller than 2, prove

that b and c must be nonzero. (the matrices of PSl(2,R) satisfying this are called elliptic
elements, and its set is denoted by E .)

(f) Show that a matrix of PSl(2,R) is an elliptic element if and only if it has a unique fixed
point in H. In this case, if A is an elliptic element, what is its unique fixed point?

(g) It can be defined a natural map f : E → H. Show that f is analytic.
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(h) What are the elliptic elements that fix the complex unit i ∈ H? (consider the matrices

Rθ :=

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
, for θ ∈ (0, 2π).)

(i) Prove that every element of E is conjugate to a unique Rθ(A). Define a function θ : E →
(0, 2π), called the angle of rotation, compute its expression and prove that is analytic.

(j) Consider the map (f, θ) : E → H× (0, 2π). Show that is an analytic diffeomorphism.

(k) The elements of PSl(2,R) whose trace absolute value is 2 are called parabolic. Show that
an element is parabolic if and only if they have a unique fixed point of the boundary of
H. Prove that they can be characterized as belonging to one of two conjugacy classes

of elements represented by p+ := ±
(
1 1
0 1

)
(positively parabolic) and p− := ±

(
1 0
1 1

)
(negatively parabolic).

(l) The elements of PSl(2,R) whose trace absolute value is larger than 2 are called hyperbolic.
Show that these elements have exactly 2 fixed points in ∂H and they are conjugate to a

diagonal matrix hλ := ±
(
λ 0
0 λ−1

)
, for a unique λ > 0. (hyperbolic conjugacy classes

are open annuli)

(m) Compute the centralizers of Rθ, hλ e p+.

5. Describe the non-regular representations Γ → PSl(2,R).

6. Let G = Sl(2,C), show that the conjugation orbit, by the action of G, of

(
1 1
0 1

)
and of the

2× 2 identity matrix cannot be separate.

7. Let ρ1 : Z → PSl(2,R) be the representation given by ρ1(1) = p+ and ρ2 be the trivial
representation. Show that the orbits Oρ1 and Oρ2 cannot be separated by disjoint open sets
in the quotient Hom(Z,PSl(2,R))/Inn(Z,PSl(2,R)). Is the conjugation action of PSl(2,R) in
Hom(Z,PSl(2,R))/Inn(Z,PSl(2,R)) Hausdorff? And proper?

8. Consider a topological group G acting on a space X. Prove the following properties:

(a) X//G is homeomorphic to X/ ∼.

(b) X//G satisfies the following universal property: for every T1 space Y , any continuous
map X → Y that is constant on G-orbits factors uniquely through π : X → X//G.

(c) There exists a natural surjective continuous map X//G↠ Haus(X/G) such that

X X/G

X//G Haus(X/G)

π

commutes.
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9. Compute the Kempf-Ness set for Γ = F1 and G a linear reductive algebraic group.

10. Being flawed implies that πn(XΓ(G)) ≃ πn(XΓ(K)), for all n, (weakly flawed groups) since
a SDR between spaces implies those spaces are homotopic and hence weakly homotopic. A
problem is to find examples of weakly flawed groups that are not flawed.

11. As S ⊂ LG, a problem is to study the conditions under which this inclusion is actually a
bijection.
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6 Project

Project Description. This project aims to explore and classify singular points in the character
variety X(Γ,PSL(2,C)), focusing on finitely generated groups Γ, such as free groups and surface
groups of low genus. We study representations up to conjugation, with particular attention to
reducible and non-liftable representations, and analyze how these give rise to singularities in the
moduli space.

Main Objectives:

1. Understand the structure of the character variety X(Γ,PSL(2,C)) as a quotient space.

2. Analyze the role of reducible representations and compute their stabilizers.

3. Investigate when a representation ρ̄ : Γ → PSL(2,C) lifts to ρ : Γ → SL(2,C), and study
obstructions via group cohomology.

4. Compute Zariski tangent spaces at selected points using H1(Γ, slAd◦ρ̄
2 ), and detect singulari-

ties.

5. Carry out a case study for Γ = F2, including explicit examples of singularities.

Expected Outcomes:

• Classification of some singular points in low-dimensional PSL(2,C) character varieties.

• Description of the effect of non-liftability on the local structure of the character variety.

• Concrete examples of singularities arising from reducible representations.

Selected References:

• [Gol84]

• [Sik12]

• [FL13]
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[Sik12] Adam S. Sikora. “Character varieties”. In: Transactions of the American Mathematical
Society 364.10 (2012). MR 2931326, pp. 5173–5208.

[Sik13] Adam S. Sikora. “Generating sets for coordinate rings of character varieties”. In: Journal
of Pure and Applied Algebra 217.11 (2013). MR 3057078, pp. 2076–2087.

[Sim88] Carlos T. Simpson. “Constructing Variations of Hodge Structure Using Yang–Mills The-
ory and Applications to Uniformization”. In: Journal of the American Mathematical
Society 1.4 (1988), pp. 867–918.

[Whi49] J. H. C. Whitehead. “Combinatorial Homotopy. I”. In: Bulletin of the American Math-
ematical Society 55 (1949). MR30759, pp. 213–245.

38

https://webusers.imj-prg.fr/~julien.marche/papiers/Character_variety.pdf
https://webusers.imj-prg.fr/~julien.marche/papiers/Character_variety.pdf
mailto:maret.arnaud@unistra.fr
http://www.jmilne.org/math/
http://www.jmilne.org/math/

	Preliminaries
	Lie groups
	Algebraic groups
	Finitely generated groups

	Representation Varieties
	Symmetries: conjugation action of G.
	Tangent spaces
	Smooth points
	Characterization of orbits
	Subsets of representations

	Character varieties
	Hausdorff and T1 quotient
	Algebraic quotient
	Strong Deformation Retractions

	Representations and Principal bundles
	Principal G-bundles
	Principal bundles parametrized by representations
	Principal Higgs bundles and branes
	Schottky representations and branes

	Exercises and Problems
	Project

